Unit 8. Multiple Antennas and Beamforming

EL-GY 6023. WIRELESS COMMUNICATIONS
PROF. SUNDEEP RANGAN

Outline

\triangle Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
\square Array Factor
\square Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
\square Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Antenna Arrays

Antenna arrays: Structure with multiple antennas- At TX and/or RX
- Key to 5G mmWave and massive MIMO
\square Two key benefits
\square Beamforming: This lecture
- Concentrate power in particular directions
- Increases SNR and may enable spatial diversity
- Requires arrays at either TX or RX
\square Spatial multiplexing: Later
- Enables transmission in multiple virtual paths
- Increases degrees of freedom
- Requires multiple antennas at both TX and RX

IBM 28 GHz array 32 element dual polarized array Sadhu et al, ISSCC 2017

Aurora C-Band Massive

 MIMO array64 elements, $5-6 \mathrm{GHz}$
https://www.taoglas.com/

Multiple Receive Antennas

\square Single Input Multiple Output

- One TX antenna
- M RX antennas
\square Transmit a scalar signal $x(t)$

\square Receive a vector of signals:
- $\boldsymbol{r}(t)=\left(r_{1}(t), \ldots, r_{M}(t)\right)^{T}$
\square What is the channel from $x(t)$ to $\boldsymbol{r}(t)$?
\square Want channel in complex baseband

Channel vs. Position

Consider single path channel that arrives at origin with:

\square Phase rotation with displacement:

- Baseband response at x is (proof on next slide):

Proof of Phase Rotation with Displacement

\square Delay of path at x is: $\tau(x)=\tau_{0}-\frac{\mathrm{x} \sin \theta}{c}$
\square Hence there is an additional delay: $-\frac{\mathrm{x} \sin \theta}{c}$
\square Baseband response at x :

$$
r(x, t)=g_{0} e^{2 \pi j x \sin \theta / \lambda} S(t-\tau(x))
$$

\square Also, $s(t-\tau(x)) \approx s\left(t-\tau_{0}\right)$ if $\mathrm{B}\left|\tau(x)-\tau_{0}\right| \ll 1$
\square But, by assumption of small displacement:

$$
\mathrm{B}\left|\tau(x)-\tau_{0}\right| \leq \frac{B|x|}{c}=\frac{B|x|}{\lambda f_{c}} \ll 1
$$

\square Hence, $r(x, t) \approx g_{0} e^{2 \pi j x \sin \theta / \lambda} s\left(t-\tau_{0}\right)$

6

Response for a ULA

\square Uniform Linear array (ULA)

- M antenna positions spaced d apart

\square Transmit signal $s(t)$

- Channel single path with AoA θ, complex gain g

\square Response at position: $r_{m}(t)=g_{0} e^{2 \pi j(n-1) d \sin \theta / \lambda} s\left(t-\tau_{0}\right)$
\square In vector notation, we can write $\boldsymbol{r}(t)=\boldsymbol{h} s\left(t-\tau_{0}\right)$
- \boldsymbol{h} is the channel vector

$$
\boldsymbol{h}=g\left[\begin{array}{c}
e^{2 \pi j 0 d \sin \theta / \lambda} \\
\vdots \\
e^{2 \pi j(M-1) d \sin \theta / \lambda}
\end{array}\right]=g \boldsymbol{u}(\theta)
$$

Response Decomposition

\square For a single path channel, the channel vector has two components:

$$
r(t)=\boldsymbol{h}(\theta) s\left(t-\tau_{0}\right), \quad \boldsymbol{h}(\theta)=g \boldsymbol{u}(\theta)
$$

\square Scalar channel gain, g

- Complex channel gain at a reference position in the array
\square Vector spatial signature, $\boldsymbol{u}(\theta)$
。 $\boldsymbol{u}(\theta)=\left[\begin{array}{c}e^{2 \pi j 0 d \sin \theta / \lambda} \\ \vdots \\ e^{2 \pi j(M-1) d \sin \theta / \lambda}\end{array}\right]$

- Vector of phase shifts from the reference
- Also called the steering vector (reason for name will be clear later)

Array Response in 3D

\square Many arrays place elements over 2D area
\square Uniform rectangular array (URA):

- $M \times N$ grid of elements
- Spaced d_{x} and d_{y}
- Also called uniform planar array (UPA)
\square Incident angle $\Omega=(\phi, \theta)$
- (Azimuth, elevation) or (azimuth, inclination)

\square Spatial signature:

- $u_{m n}(\Omega)=$ complex response to antenna (m, n)
- $u_{m n}(\Omega)=\exp \left[\frac{2 \pi i}{\lambda}\left(m d_{x} \sin \theta \cos \phi+n d_{y} \sin \theta \sin \phi\right)\right]$

Mutual Coupling

\square The above formulas assume there is no mutual coupling
\square Mutual coupling:

- Signals on one antenna scatter to another antenna
- Changes the antenna response
\square Mutual coupling effect is typically large when:
- Antennas are close
- Or arrays are combined with highly directive elements
\square We will show how to account for mutual coupling at the end of unit

MATLAB Phased Array Toolbox

DPowerful toolbox

DRoutines for:

- Defining and visualizing arrays

- Computing beam patterns
- Beamforming
- MIMO
- Radar

Example: Defining a ULA

DDefine and view the array

Uniform Linear Array (ULA)
-Can display array:

- Using viewArray command
- Or, manually

```
%% Uniform Linear Array
% We first define a simple uniform linear array
fc = 28e9; % frequency
lambda = physconstt('LightSpeed')/fc;
dsep = 0.5*lambda; % element spacing
nant = 8; % Number of elements
arr = phased.ULA (nant, dsep);
% View the array
viewArray(ula,'Title','Uniform Linear Array (ULA)')
elemPos = arr.getElementPosition();
clf('reset');
plot (elemPos(1,:), elemPos(2,:), 'o');
```


Computing the Spatial Signature

\square Compute the spatial signature with the SteeringVector object

```
% Create a steering vector object
sv = phased.SteeringVector('SensorArray',arr);
% Angles to compute the SVs
npts = 361;
az = linspace(-180,180,npts);
el = zeros(1,npts);
ang = [az; el];
% Matrix of steering vectors
% This is an nant x npts matrix in this case
u = sv(fc, ang);
% Plot of the real components
plot(az, real(u)');
grid on;
xlabel('Azimuth (deg)')
ylabel('Real spatial sig');
```


Example: Defining a URA

DDefine and view the array

UUse the phased.URA class
\square Can compute steering vector similarly

```
% Construct the array
nant = [4,8];
dsep = 0.5*lambda;
arr = phased.URA(nant,dsep,'ArrayNormal','x');
% Plot the array.
% You can also use, arr.viewArray()
elemPos = arr.getElementPosition();
clf('reset')
plot(elemPos(2,:), elemPos(3,:), 'o');
grid on;
xlabel('y');
ylabel('z');
```


A 4×8 URA with normal axis aligned on x

Multiple Antennas in Commercial Systems

Dub 6 GHz systems: Mostly 1 to 4 antennas on base stations or smart phones
Form factor restricts larger number of antennas

2x2 LTE base station antenna
Cros-polarization
16 dBi element gain, 90 deg sector $750 \times 120 \times 60 \mathrm{~mm}$

K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S He, "Body-Insensitive Multimode MIMO Terminal Antenna of Double-Ring Structure," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 1925-1936, May 2015.

Massive MIMO

\square Massive MIMO:

- Many base station antennas
- 64 to 128 in many systems today
\square Significant capacity increase
- Typically $8 x$ by most estimates
$\square U s e$ SDMA
- Will discuss this later

Beamforming and MmWave

\square To compensate for high isotropic path loss, mmWave systems need large number of antennas
$\square 5 G$ handsets: Multiple arrays with 4 to 8 antennas each
$\square 5 G$ base stations: 64 to 256 elements

IBM 28 GHz array 32 element dual polarized array Sadhu et al, ISSCC 2017

Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user equipment." 2018 IEEE 5G World Forum (5GWF). IEEE, 2018.

17

Outline

\square Antenna Arrays and the Spatial Signature
Receive Beamforming and SNR Gain with a Single Path

\square Array Factor

\square Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
\square Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

RX Beamforming

\square Consider a general channel: $\boldsymbol{r}=\boldsymbol{h} x+\boldsymbol{n}$

- 1 input, M outputs

Beamforming: Take a linear combination of signals
。 $z=\boldsymbol{w}^{T} \boldsymbol{r}=\sum_{j} w_{j} r_{j}$

- \boldsymbol{w} is called beamforming vector for multiple antennas
\square Creates effective SISO channel:

$$
z=\boldsymbol{w}^{T} \boldsymbol{r}=\left(\boldsymbol{w}^{T} \boldsymbol{h}\right) x+\boldsymbol{w}^{T} \boldsymbol{n}=\alpha x+v
$$

- 1 input $x, 1$ output symbol z
- Gain: $\alpha=\boldsymbol{w}^{T} \boldsymbol{h}$

- Noise: $v=\boldsymbol{w}^{T} \boldsymbol{n}$

Conjugate Transpose Conventions

\square For beamforming, we will use the following conventions
\square Complex conjugate of a complex scalar $z=a+b i$ is denoted $\bar{z}=a-b i$
\square Unless otherwise specified, vectors are column vectors: $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$
\square Transpose: $\boldsymbol{x}^{T}=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$
\square Conjugate transpose: $\boldsymbol{x}^{*}=\left[\begin{array}{lll}x_{1}^{*} & \cdots & x_{n}^{*}\end{array}\right]$
\square Elementwise conjugate: $\overline{\boldsymbol{x}}=\left[\begin{array}{c}\bar{x}_{1} \\ \vdots \\ \bar{x}_{n}\end{array}\right]$

- Takes conjugate of each element but keeps \boldsymbol{x} a column vector

Beamforming Analysis

\square Linear combining: $z=\boldsymbol{w}^{T} \boldsymbol{r}=\left(\boldsymbol{w}^{T} \boldsymbol{h}\right) x+\boldsymbol{w}^{T} \boldsymbol{n}$

- Gain: $\alpha=\boldsymbol{w}^{T} \boldsymbol{h}$
- Noise: $v=\boldsymbol{w}^{T} \boldsymbol{n}$

\square Analysis: Let

- $E_{x}=E|x|^{2}=$ average symbol energy

\square Then, after combining;
- Signal energy $=\left|\boldsymbol{w}^{T} \boldsymbol{h}\right|^{2} E_{x}$
- Noise: v is Gaussian with $E|v|^{2}=\|\boldsymbol{w}\|^{2} N_{0}$
- SNR is:

$$
\gamma=\frac{\left|\boldsymbol{w}^{T} \boldsymbol{h}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}
$$

Maximum Ratio Combining

\square From previous slide: SNR is $\gamma=\frac{\left|\boldsymbol{w}^{T} \boldsymbol{h}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}$
\square Maximum ratio combining: Select BF vector to maximize SNR: $\widehat{\boldsymbol{w}}=\arg \max _{\boldsymbol{w}} \frac{\left|\boldsymbol{w}^{T} \boldsymbol{h}\right|^{2} E_{\chi}}{\|\boldsymbol{w}\|^{2} N_{0}}$
\square Theorem: The MRC weighting vector and maximum SNR is:

$$
\widehat{\boldsymbol{w}}=c \overline{\boldsymbol{h}} \Rightarrow \gamma_{M R C}=\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}}
$$

- Any constant $c \neq 0$ can be used. Constant does not matter

- Align BF vector with the conjugate of the channel
\square Also called conjugate beamforming

Proof of the MRC Solution

\square We want to maximize $\widehat{\boldsymbol{w}}=\arg \max _{\boldsymbol{w}} \frac{\left|\boldsymbol{w}^{T} \boldsymbol{h}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}$
\square Write the inner product as:

$$
\overline{\boldsymbol{h}}^{*} \boldsymbol{w}=\sum w_{i} \overline{\bar{h}}_{i}=\sum w_{i} h_{i}=\left|\boldsymbol{w}^{T} \boldsymbol{h}\right|
$$

\square Hence, we want to maximize $\widehat{\boldsymbol{w}}=\arg \max _{\boldsymbol{w}} \frac{\left|\overline{\boldsymbol{h}}^{*} \boldsymbol{w}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}$
\square From Cauchy-Schwartz: $\left|\overline{\boldsymbol{h}}^{*} \boldsymbol{w}\right|^{2}=\|\boldsymbol{w}\|^{2}\|\overline{\boldsymbol{h}}\|^{2} \cos \theta$

- Hence, $\gamma=\|\overline{\boldsymbol{h}}\|^{2} \frac{E_{x}}{N_{0}} \cos \theta=\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}} \cos \theta$
- Maximized with $\cos \theta=1 \Rightarrow \theta=0$
\square So, we take $\boldsymbol{w}=c \overline{\boldsymbol{h}}$

MRC Gain

$\square S N R$ with MRC: $\gamma_{M R C}=\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}}$
\square SNR on channel i is: $\gamma_{i}=\frac{\left|h_{i}\right|^{2} E_{x}}{N_{0}}$
\square Average SNR is: $\gamma_{\text {avg }}=\frac{1}{M} \sum_{i=1}^{M} \gamma_{i}=\frac{1}{M} \sum_{i=1}^{M}\left|h_{i}\right|^{2} \frac{E_{x}}{N_{0}}=\frac{1}{M}\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}}$
-MRC increases SNR by a factor of M relative to average per channel SNR
\square Beamforming gain $=\frac{\gamma_{M R C}}{\gamma_{\text {avg }}}=M$
\square Example: Suppose average SNR per antenna is 10 dB .

- With $M=16$ antennas and MRC, SNR $=10+10 \log _{10}(16)=10+4(3)=22 \mathrm{~dB}$
- Gain increases significantly!
\square Note: The gain assumes no mutual coupling.
- Once antennas are close, the gain will no longer increase by M

Single Path Channel Case

Consider special case of single path channel: $\boldsymbol{r}=g_{0} \boldsymbol{u}(\Omega) x+\boldsymbol{n}$

- Channel is $\boldsymbol{h}=g_{0} \boldsymbol{u}(\Omega)$
\square SNR per antenna (before beamforming):
- $\gamma_{0}=\frac{E_{x}\left|g_{0}\right|^{2}}{N_{0}}\left|u_{m}(\Omega)\right|^{2}=\frac{E_{x}\left|g_{0}\right|^{2}}{N_{0}}$
- Assume $u_{m}(\Omega)$ includes only phase shifts

\square SNR after BF: $\gamma=\frac{\left|\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{u}(\Omega)\right|^{2}}{\|\boldsymbol{w}\|^{2}} \gamma_{0}$
\square MRC beamforming: $\widehat{\boldsymbol{w}}=c \overline{\boldsymbol{u}}(\Omega)$ and $\gamma=\|\boldsymbol{u}(\Omega)\|^{2} \gamma_{0}=M \gamma_{0}$

\square Conclusions:

- Optimal (MRC) beamforming vector is aligned to the conjugate of the spatial signature
- Optimal SNR gain = M (assuming no mutual coupling)
- Linear gain with number of antennas

Example Problem

\square Consider a system

- TX power $=23 \mathrm{dBm}$ with antenna directivity $=10 \mathrm{dBi}$
- Free space path loss $d=1000 \mathrm{~m}$
- Sample rate $=400 \mathrm{Msym} / \mathrm{s}$
- Noise energy $=-170 \mathrm{dBm} / \mathrm{Hz}$ (including NF)
- RX antenna directivity $=5 \mathrm{dBi}$ and 8 elements

SNR per ant:	0.59
SNR with MRC:	9.62

DFind SNR per antenna and SNR with MRC
\square Solution: We get a 9 dB gain!

```
% SNR per antenna
plomni = fspl(dist, lambda);
EsNOAnt = ptx - plomni - 10*log10(bw) - Enoise + dirtx + dirrx;
% SNR with MRC
EsNOMRC = EsNO + 10*log10(nantrx);
```


In-Class Problem: Simple QPSK simulation

\square Simulate QPSK transmission over a single path channel

Outline

\square Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
λ Array Factor
\square Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
\square Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Array Factor

\square Suppose RX aligns antenna for $\mathrm{AoA} \Omega_{0}=\left(\theta_{0}, \phi_{0}\right)$
\square But signal arrives from AoA $\Omega=(\theta, \phi)$
\square Define the (complex) array factor

$$
\operatorname{AF}\left(\Omega, \Omega_{0}\right)=\widehat{\boldsymbol{w}}^{T}\left(\Omega_{0}\right) \boldsymbol{u}(\Omega)=\frac{1}{\sqrt{M}} \boldsymbol{u}^{*}\left(\Omega_{0}\right) \boldsymbol{u}(\Omega)
$$

- Assume $\|\widehat{w}\|=1$
- Indicates directional gain as a function of $\operatorname{AoA} \theta$
- Dependence on θ_{0} often omitted
\square SNR gain $=\left|A F\left(\Omega, \Omega_{0}\right)\right|^{2}$
- Max value $=M$
- Usually measured in dBi (dB relative to isotropic)
- Also called the array response

29

Uniform Linear Array

\square Spatial signature (for azimuth angle ϕ):

- $\boldsymbol{u}(\phi)=\left[1, e^{j \beta}, \ldots, e^{i(M-1) \beta}\right]^{T}, \beta=\frac{2 \pi d \cos \phi}{\lambda}$
- Note change from $\sin \theta$ to $\cos \phi$. (Array aligned on y-axis)
$\square O p t i m a l ~ B F ~ v e c t o r ~ f o r ~ A o A ~ \phi_{0}$
- $\widehat{\boldsymbol{w}}\left(\phi_{0}\right)=\frac{1}{\sqrt{M}} \overline{\boldsymbol{u}}\left(\phi_{0}\right) \quad$ (Note normalization)
\square Array factor:

$$
\begin{aligned}
& \quad A F\left(\phi, \phi_{0}\right)=\frac{1}{\sqrt{M}} \boldsymbol{u}^{*}\left(\phi_{0}\right) \boldsymbol{u}(\phi)=\frac{e^{j(M-1) \gamma / 2}}{\sqrt{M}} \frac{\sin (M \gamma / 2)}{\sin (\gamma / 2)}, \\
& \circ \gamma=\frac{2 \pi d}{\lambda}\left(\cos \phi-\cos \phi_{0}\right),
\end{aligned}
$$

\square Antenna gain: $|A F|^{2}=\frac{\sin ^{2}(M \gamma / 2)}{M \sin ^{2}(\gamma / 2)}$

Antenna Gain for ULA

Broadside: $\theta_{0}=0$

Endfire: $\theta_{0}=90$

$$
d=\lambda / 2, \quad M=8
$$

\square Maximum gain of

\square Note:

- Endfire vs. broadside
- Beamwidth $\propto 1 / M$

Plotting the Array Factor

\square Create a SteeringVector object
\square Get steering vectors
\square Compute inner products

```
% Create a steering vector object
sv = phased.SteeringVector('SensorArray',arr);
% Reference angles to plot the AF
azPlot = [0, 90];
nplot = length(azPlot);
```



```
for iplot = l:nplot
    % Get the SV for the beam direction
    % Note: You must call release method of the sv
    % before each call since it expects the same size
    % of the input
    ang0 = [azPlot(iplot); 0];
    sv.release();
    u0 = sv(fc, ang0);
    % Normalize the direction
    u0 = u0 / norm(u0);
    % Get the SV for the AoAs. Take el=0
    npts = 1000;
    az = linspace(-180,180,npts);
    el = zeros(1,npts);
    ang = [az; el];
    sv.release();
    u = sv(fc, ang);
    % Compute the AF and plot it
    AF = 10* log10( abs(sum(conj(u0).*u, 1)).^2 );
    % Plot it
    subplot(1,nplot,iplot);
    plot(ang(1,:), AF, 'LineWidth', 2);
end
```


Polar Plot

\square Useful to visualize in polar plot
-Note key features:

- Direction of maximum gain
- Sidelobes
- Pattern repeated on reverse side
\% Polar plot
AFmin $=-30$;
subplot(1, nplot,iplot);
polarplot(deg2rad(az), max(AF, AFmin), 'LineWidth', 2); rlim([AFmin, 10]);
grid on;

Key Statistics

Full null beamwidth (zero to zero)

Half power beamwidth (-3dB to -3dB)

First sidelobe level

	Broadside $\left(\theta_{0}=\pi / 2\right)$	End-fire $\left(\theta_{0}=0\right)$
FNBW	$2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{\lambda}{N \Delta}\right)\right]$	$2 \cos ^{-1}\left(1-\frac{\lambda}{N \Delta}\right)$
	$\left(30^{\circ}\right)$	$\left(83^{\circ}\right)$
HPBW	$2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{1.39 \lambda}{\pi N \Delta}\right)\right]$	$2 \cos ^{-1}\left(1-\frac{1.39 \lambda}{\pi N \Delta}\right)$
	$\left(13^{\circ}\right)$	$\left(54^{\circ}\right)$
FSLL	$\frac{1}{N \left\lvert\, \sin \left(\frac{3 \pi}{2 N}\right)\right.}$	$\frac{1}{N \left\lvert\, \sin \left(\frac{3 \pi}{2 N}\right)\right.}$
	$(-13 \mathrm{~dB})$	$(-13 \mathrm{~dB})$
D_{0}	$2 N \Delta / \lambda$	$4 N \Delta / \lambda$
	$(9 \mathrm{~dB})$	$(12 \mathrm{~dB})$

\square From Jacobs University slides
\square Values in () for: $d=\lambda / 2, \quad M=8$

Grating Lobes

\square When $d>\frac{\lambda}{2}$
\square Obtain multiple peaks
\square Does not direct gain in one direction

```
dsep = 2*lambda; % element spacing
nant = 8; % Number of elements
arr = phased.ULA (nant,dsep);
|
% Get the SV for the beam direction.
ang0 = [0; 0];
sv.release();
u0 = sv(fc, ang0);
arr.patternAzimuth(fc,'Weights', u0);
```


Directivity (dBi), Broadside at 0.00

Plotting the Patterns

\square MATLAB has excellent routines for 3D patterns
\square Note that this plots directivity not array factor
sv $=$ phased.SteeringVector('SensorArray',arr) ang0 $=$ [0; 0];
sv.release()
$u_{0}=s v(f c$, ango);
$u 0=u 0 /$ norm(u0);

\% We can plot the directivity in a 3D plot arr.pattern(fc,'Weights', u0);

elPlot $=$ [0 45];
arr.patternAzimuth(fc, elPlot, 'Weights', u0);

Outline

\square Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
\square Array Factor
Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
\square Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Multiple TX antennas

DMISO channel

- Multiple input single output
- M TX antennas, 1 RX antennas
- Transmit vector: $\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{M}(t)\right)^{T}$
- Scalar RX: $r(t)$

DMost of the theory is identical to the SIMO channel

Single Path Channel

DFirst consider single path channel

\square Similar to the SIMO case, RX signal is:

$$
r(t)=g_{0} A(\Omega) \boldsymbol{u}^{T}(\Omega) \boldsymbol{x}(t-\tau)
$$

- g_{0} path gain
- $\Omega=$ angle of departure
- $\tau=$ path delay
- $\boldsymbol{u}(\Omega)$ TX spatial signature
- $A(\Omega)$: complex TX element gain

TX array

RX with single antenna
$\square T X$ and $R X$ spatial signatures are identical

TX Beamforming

$\square \mathrm{RX}$ signal is: $r(t)=g_{0} \boldsymbol{u}^{T}(\Omega) \boldsymbol{x}(t-\tau)+n(t)$
—TX beamforming

- Input scalar information signal $s(t)$
- Create vector signal to antennas: $\boldsymbol{x}(t)=\boldsymbol{w} s(t)$
\square Signal to antenna i is: $x_{i}(t)=w_{i} s(t)$
- w_{i} is a complex weight applied to signal

$\square \boldsymbol{w}$ is called the TX beamforming vector
- Also called pre-coding

SNR with TX Beamforming

$\square \mathrm{RX}$ signal is: $r=g_{0} \boldsymbol{u}^{T}(\Omega) \boldsymbol{x}+n$

- Drop dependence on time to simplify notation
\square With $\boldsymbol{x}=\boldsymbol{w} s$ SISO channel is $r=g_{0} \boldsymbol{u}^{T}(\Omega) \boldsymbol{w} s+n$
\square Total transmitted energy across all N TX chains is:

- $\gamma_{0}=\frac{\left|g_{0}\right|^{2}}{N_{0}} E_{S}$ is the SNR for a single antenna

MRC TX Beamforming

DFrom previous slide, SNR is: $\gamma=\gamma_{0}\left|\boldsymbol{u}^{*}(\Omega) \boldsymbol{w}\right|^{2}$
\square To maximize SNR s.t. power constraint

\square Define and compute Array Factor similarly

Outline

\square Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
\square Array Factor
\square Transmit Beamforming with a Single Path
Multipath and MIMO Channels
\square Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

MIMO Channel with a Single Path

\square Multi-input Multi-Output (MIMO) channel:

- TX array with N_{t} elements
- RX array with N_{r} elements
\square Single path channel:

$$
\boldsymbol{r}(t)=g_{0} \boldsymbol{u}_{r x}\left(\Omega^{r x}\right) \boldsymbol{u}_{t x}^{T}\left(\Omega^{t x}\right) \boldsymbol{x}(t-\tau)=\boldsymbol{H} \boldsymbol{x}(t-\tau)
$$

\square MIMO channel matrix for a single path channel:

$$
\boldsymbol{H}=g_{0} \boldsymbol{u}_{r x}\left(\Omega^{r x}\right) \boldsymbol{u}_{t x}^{T}\left(\Omega^{t x}\right)
$$

Beamforming on a MIMO Channel

\square Consider MIMO channel, $\boldsymbol{r}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{v}, \boldsymbol{H} \in \mathbb{C}^{M \times N}, \quad \boldsymbol{v} \sim C N\left(\mathbf{0}, N_{0} \boldsymbol{I}\right)$

- Channel on time and frequency resource
\square Apply TX beamforming: $\boldsymbol{x}=\boldsymbol{w}_{t x} S$
- Assume $\left\|\boldsymbol{w}_{t x}\right\|=1$ so total transmit energy is $E_{s}=E|s|^{2}$
\square Apply RX beamforming: $z=\boldsymbol{w}_{r x}^{T} \boldsymbol{r}$
- Assume $\left\|\boldsymbol{w}_{r x}\right\|=1$ so total received noise energy $E\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{v}\right|^{2}=\mathrm{N}_{0}$
\square Equivalent channel: $z=\boldsymbol{w}_{r x}^{T} \boldsymbol{r}=G s+d$,
。 $G=\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}=$ complex beamformed channel gain
- Noise energy is $E\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{v}\right|^{2}=\mathrm{N}_{0}$
\square SNR with beamforming: $\gamma=\frac{|G|^{2} E_{S}}{\mathrm{~N}_{0}}=\frac{\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}\right|^{2} E_{S}}{\mathrm{~N}_{0}}$

Beamforming Gain with a Single Path

\square From previous slide, we saw SNR on a MIMO channel is: $\gamma=\frac{|G|^{2} E_{S}}{\mathrm{~N}_{0}}=\frac{\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}\right|^{2} E_{S}}{\mathrm{~N}_{0}}$
\square Suppose we have a single path channel: $\boldsymbol{H}=g_{0} \boldsymbol{u}_{r x}\left(\Omega^{r x}\right) \boldsymbol{u}_{t x}^{T}\left(\Omega^{t x}\right)$
\square Take TX and RX conjugate beamforming vectors:
$\circ \boldsymbol{w}_{r x}=\frac{\overline{\boldsymbol{u}}_{r x}\left(\Omega^{r x}\right)}{\sqrt{N_{r}}}, \boldsymbol{w}_{t x}=\frac{\overline{\boldsymbol{u}}_{t x}\left(\Omega^{t x}\right)}{\sqrt{N_{t}}}$
\square Then SNR is $\gamma=\frac{\left|g_{0}\right|^{2} E_{S}}{N_{0}} \frac{\left|u_{r x}^{*}\left(\Omega^{r x}\right) u_{r x}\left(\Omega^{r x}\right)\right|^{2}}{N_{r}} \frac{\left|u_{t x}^{*}\left(\Omega^{t x}\right) u_{t x}\left(\Omega^{t x}\right)\right|^{2}}{N_{t}}=\frac{\left|g_{0}\right|^{2} E_{S}}{N_{0}} N_{r} N_{t}$
\square But $\frac{\left|g_{0}\right|^{2} E_{S}}{N_{0}}$ is the SNR per antenna
Conclusion: Maximum BF gain on a single path channel is $N_{r} N_{t}$

- Again, assuming no mutual coupling

Friis' Law and MmWave

\square Recall Friis' Law: $\frac{P_{r}}{P_{t}}=D_{r} D_{t}\left(\frac{\lambda}{4 \pi R}\right)^{2}$
\square Isotropic path loss decreases with λ^{2}
\square Millimeter Wave systems: Increases f_{c}^{2}

- Decreases $\lambda^{2} \Rightarrow$ Increase path loss

\square But, with beamforming:

- Directivity $D_{r} \propto N_{r}$ and $D_{t} \propto N_{t}$
- Each antenna takes area $\propto \lambda^{2}$

- So, for fixed total aperture:

$$
D_{r} \propto N_{r} \propto \frac{1}{\lambda^{2}}, D_{t} \propto N_{t} \propto \frac{1}{\lambda^{2}}
$$

\square Can compensate isotropic path loss with directivity

Friis' Law and MmWave

Condition	Directivity scaling	Path loss scaling
No beamforming	D_{i} constant	$P L \propto f_{c}^{2}$
Beamforming on one side (TX or RX)	$D_{1} \propto f_{c}^{2}, D_{2}$ constant	$P L$ constant
Beamforming on both sides (TX and RX)	$D_{1}, D_{2} \propto f_{c}^{2}$	$P L \propto f_{c}^{-2}$

\square Friis' Law: $\frac{P_{r}}{P_{t}}=D_{1} D_{2}\left(\frac{\lambda}{4 \pi R}\right)^{2}$
\square Conclusions: With a fixed aperture and beamforming

- Isotropic path loss can be overcome
\square But systems need very directive beams
- Raises many other issues. E.g. Channel tracking, processing, ...

Multiple Paths

\square Easy to extend channel response to multiple paths
\square Each path adds a term with a spatial signature

\square Time-domain model

$$
\begin{gathered}
\boldsymbol{r}(t)=\sum_{\ell=1}^{L} g_{\ell} e^{j \omega_{\ell} t} \boldsymbol{u}_{r x}\left(\Omega_{\ell}^{r x}\right) \boldsymbol{u}_{t x}^{T}\left(\Omega_{\ell}^{t x}\right) x\left(t-\tau_{\ell}\right)+\boldsymbol{n}(t) \\
\text { Complex gain } \quad \text { AoA } \quad \text { AoD } \quad \text { Delay }
\end{gathered}
$$

Time-Varying Frequency Response

\square The channel response can also be described as a time and frequency-varying matrix

$$
\boldsymbol{H}(t, f)=\sum_{\ell=1}^{L} g_{\ell} e^{2 \pi j\left(f_{\ell} t-\tau_{\ell} f\right)} \boldsymbol{u}_{r x}\left(\Omega_{\ell}^{r x}\right) \boldsymbol{u}_{t x}^{T}\left(\Omega_{\ell}^{t x}\right)
$$

- At time and frequency $\boldsymbol{H}(t, f) \in \mathbb{C}^{N_{r} \times N_{t}}$
- Varies in time due to Doppler shifts f_{ℓ}
- Varies in frequency due to delay spread τ_{ℓ}

OFDM Time-Frequency Grid

\square Consider OFDM channel

- Sub-carrier spacing $F_{s c}$, symbol time $T_{\text {sym }}$
- Index with $k=$ OFDM symbol index, $n=$ subcarrier index
\square Transmit array: $\boldsymbol{X}[n, k]$
- At each k, n, we transmit a vector

$$
X[n, k]=\left[X_{1}[n, k], \ldots, X_{N}[n, k]\right]^{T}
$$

- $N=$ number of TX antennas
\square Receive array: $\boldsymbol{Y}[n, k]$:

$$
\boldsymbol{Y}[n, k]=\left[Y_{1}[n, k], \ldots, Y_{M}[n, k]\right]^{T}
$$

- $M=$ number of RX antennas
- One M dim vector per resource element

OFDM Channel with Multiple RX Antennas

\square OFDM channel acts as multiplication:
\square Under normal operation (delay spread is contained in CP):

\square OFDM channel gains can be computed from the multi-path components

$$
\boldsymbol{H}[k, n]=\sum_{\ell=1}^{L} g_{\ell} e^{2 \pi j\left(T_{s y m} k f_{\ell}-F_{s c} n \tau_{\ell}\right)} \boldsymbol{u}_{r x}\left(\Omega_{\ell}^{r x}\right) \boldsymbol{u}_{t x}^{*}\left(\Omega_{\ell}^{t x}\right)
$$

- $T=$ OFDM symbol time, $S=$ sub-carrier spacing
- For each path: $f_{\ell}=$ Doppler shift, $\tau_{\ell}=$ Delay, $g_{\ell}=$ complex gain

Outline

\square Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
\square Array Factor
\square Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Orthogonal Vectors

\square Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} (real or complex)
\square Vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}^{N}$ are orthogonal if $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{*} \boldsymbol{y}=0$.

- Write $\boldsymbol{x} \perp \boldsymbol{y}$
- Visually, $\boldsymbol{x} \perp \boldsymbol{y}$ if they are at 90 degrees
\square A set of vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{K} \in \mathbb{F}^{N}$ are orthonormal

- $\boldsymbol{v}_{i} \perp \boldsymbol{v}_{j}$ when $i \neq j$
- $\left\|\boldsymbol{v}_{i}\right\|=1$ for all i
- Vectors are pairwise orthogonal and unit norm
\square Orthonormal basis: An orthonormal set $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N} \in \mathbb{F}^{N}$
- Any vector can be written $x=\sum \alpha_{n} \boldsymbol{v}_{n}, \alpha_{n}=\boldsymbol{v}_{n}^{*} \boldsymbol{x}$
- α_{n} are the coefficients of \boldsymbol{x} in the basis $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}$

Orthogonal and Unitary Matrices

\square A matrix $U \in \mathbb{C}^{N \times N}$ is unitary if $U^{*} U=U U^{*}=I$
\square A matrix $U \in \mathbb{R}^{N \times N}$ is orthogonal if $U^{T} U=U U^{T}=I$

- Orthogonal is just the real-valued version of unitary
\square Key properties:
- U is orthogonal if and only if columns are orthonormal
- U is orthogonal if and only if rows are orthonormal
- Taking an inverse is easy $U^{-1}=U^{*}$

Examples of Orthogonal Matrices

$\square 2 \mathrm{D}$ rotation matrix by $\theta: \boldsymbol{V}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

- Can verify that $\boldsymbol{V}^{*} \boldsymbol{V}=I$
- 3D rotation matrices are also orthogonal

\square Example with 3 vectors:

- Let $\boldsymbol{v}_{1}=\frac{1}{\sqrt{11}}\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \boldsymbol{v}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \boldsymbol{v}_{3}=\frac{1}{\sqrt{66}}\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]$
- Can verify that $\boldsymbol{v}_{i}^{*} \boldsymbol{v}_{j}=\delta_{i j}$
- Hence the matrix: $\boldsymbol{V}=\left[\begin{array}{ccc}3 / \sqrt{11} & -1 / \sqrt{6} & -1 / \sqrt{66} \\ 1 / \sqrt{11} & 2 / \sqrt{6} & -4 / \sqrt{66} \\ 1 / \sqrt{11} & 1 / \sqrt{6} & 7 / \sqrt{66}\end{array}\right]$

Beamspace Matrices

\square Consider a ULA with normalized steering vector:

$$
\boldsymbol{u}(\phi)=\frac{1}{\sqrt{N}}\left[1, e^{j \beta \cos \phi}, \ldots, e^{j(N-1) \beta \cos \phi}\right]^{T}, \quad \beta=\frac{2 \pi d}{\lambda}
$$

\square Take N angles: $\beta \cos \phi_{n}=2 \pi\left(\frac{n}{N}-\frac{1}{2}+\frac{1}{N}\right), \quad n=0,1, \ldots, N-1$

- This is possible if $d \geq \frac{\lambda}{2}$
\square The vectors $\boldsymbol{u}\left(\phi_{n}\right), n=0,1, \ldots, N-1$ are orthonormal
\square These are called the beamspace vectors
- An orthonormal basis for the spatial domain

$\mathrm{d}=0.75$ lambda

Symmetric and Hermitian Matrices

DDefinition:

- A matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{T}$
- A matrix $\boldsymbol{A} \in \mathbb{C}^{N \times N}$ is Hermitian if $\boldsymbol{A}=\boldsymbol{A}^{*}$
\square Symmetric is the real version of Hermitian
\square For any \boldsymbol{A} symmetric / Hermitian:
- There are an orthonormal set of eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$
- All eigenvalues are real (not complex)
\square Let $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right] \in \mathbb{F}^{N \times N}=$ Matrix with the eigenvectors as the columns
- Then $\boldsymbol{V}=\boldsymbol{V}^{*}$ is orthogonal / unitary
- Hence $\boldsymbol{A}=\boldsymbol{V} \boldsymbol{D} \boldsymbol{V}^{*}, \boldsymbol{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ diagonalizable with unitary

Sample Problem

-Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Find an orthogonal bases of eigenvectors and their eigenvalues
\square Solution: Eigenvalues:

$$
\begin{aligned}
& \circ \operatorname{det}(\lambda I-A)=\operatorname{det}\left[\begin{array}{cc}
\lambda-1 & -2 \\
-2 & \lambda-1
\end{array}\right]=(\lambda-1)^{2}-4=0 \\
& \circ \lambda=1 \pm 2=-1,3
\end{aligned}
$$

\square For $\lambda=-1,(\lambda I-A) v=\left[\begin{array}{ll}-2 & -2 \\ -2 & -2\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow v_{1}=-v_{2}$

- Take $v=\frac{1}{\sqrt{2}}[1,-1]^{T}$
\square For $\lambda=3,(\lambda I-A) v=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow v_{1}=v_{2}$
- Take $v=\frac{1}{\sqrt{2}}[1,1]^{T}$

Positive Definite Matrices

\square Let $\boldsymbol{A}=\boldsymbol{A}^{*} \in \mathbb{F}^{N \times N}$ be symmetric / Hermitian with eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$

- Recall that the eigenvalues are real

\square Definition:

- A is positive semi-definite if $\lambda_{i} \geq 0$ for all i
- A is positive definite if $\lambda_{i}>0$ for all i
\square Notation: $\boldsymbol{A}>0$ for positive definite and $\boldsymbol{A} \geq 0$ when \boldsymbol{A} is positive semi-definite
\square Key property: If $\boldsymbol{A}=\boldsymbol{A}^{*}$ then:
- $\boldsymbol{A} \geq 0$ if and only if $\boldsymbol{x}^{*} \boldsymbol{A} \boldsymbol{x} \geq 0$ for all \boldsymbol{x}
- $A>0$ if and only if $x^{*} A x>0$ for all $x \neq 0$

Matrix Square Roots

\square Theorem: Let $A \in \mathbb{F}^{N \times N}$. Then $A \geq 0$ if and only if $A=B B^{*}$ for some $B \in \mathbb{F}^{N \times M}$

- Note: The dimension M can be anything ($M \geq N$ or $M<N$)

\square Proof:

- (\Rightarrow) Suppose $A \geq 0$. Then $A=U D U^{*}, D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$
- Write $B=U D^{1 / 2} U^{*} . D=\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{N}^{1 / 2}\right)$

- Then: $B B^{*}=B^{2}=U D^{1 / 2} U^{*} U D^{1 / 2} U^{*}=U D U^{*}=A$
- Since $A=B^{2}$ and $B \geq 0, B$ is called the matrix square root. Write $B=A^{1 / 2}$
- (\Leftarrow) Suppose $A=B B^{*}$.
- Then for any $x, x^{*} A x=x^{*} B B^{*} x=\left\|B^{*} x\right\|^{2} \geq 0$

Singular Value Decomposition

\square Given matrix $\boldsymbol{A} \in \mathbb{F}^{M \times N}$, an SVD is a factorization of the form, $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ where

- $\boldsymbol{U} \in \mathbb{F}^{M \times M}, \boldsymbol{U}^{*} \boldsymbol{U}=\boldsymbol{I}_{M}$, a unitary matrix
- $\boldsymbol{V} \in \mathbb{F}^{N \times N}, \boldsymbol{V}^{*} \boldsymbol{V}=\boldsymbol{I}_{N}$, a unitary matrix
- If $M \geq N, \boldsymbol{\Sigma}=\left[\begin{array}{c}\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{N}\right) \\ \mathbf{0}_{(M-N) \times N}\end{array}\right]$. If $N \geq M, \boldsymbol{\Sigma}=\left[\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{M}\right) \quad \mathbf{0}_{N \times(M-N)}\right]$
\square Values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{L} \geq 0, L=\min (M, N)$. Called the singular values
\square All matrices have an SVD

Example

\square Let $A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0\end{array}\right]$
\square Then can check that $A=U \Sigma V^{*}$

$$
\mathbf{U}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & \sqrt{5} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \mathbf{V}^{*}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\
0 & 0 & 0 & 1 & 0 \\
-\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2}
\end{array}\right]
$$

- Also verify that $U U^{*}=I_{5}$ and $V V^{*}=I_{5}$
- This can be found by (cleverly) permute the rows of A
- But, in general, use a computer to compute SVD

Geometric Interpretation

\square Let $A=U \Sigma V^{*}$ and $y=A x$
\square Consider a transformed space

- $\boldsymbol{w}=\boldsymbol{V}^{*} \boldsymbol{x}$ so $\boldsymbol{w}=\left[w_{1}, \ldots, w_{N}\right]$ are the coefficients of the input in the basis $V=\left[v_{1}, \ldots, v_{N}\right]$

。 $\boldsymbol{z}=\boldsymbol{U}^{*} \boldsymbol{y}$ so $\mathbf{z}=\left[z_{1}, \ldots, z_{M}\right]$ are the coefficients in the basis $U=\left[u_{1}, \ldots, u_{M}\right]$
\square Then: $\mathbf{z}=\boldsymbol{\Sigma} \boldsymbol{w}$ so $z_{i}=\sigma_{i} w_{i}$

$A=U \cdot \Sigma \cdot V^{*}$
of encine iring

SVD and Rank

\square Theorem: Suppose $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*} \in \mathbb{F}^{M \times N}$, then

$$
\operatorname{rank}(\boldsymbol{A})=\left|\left\{\sigma_{\ell}>0\right\}\right|=\text { num of positive singular values }
$$

\square Ex: Suppose $A \in \mathbb{C}^{5 \times 3}$ with $\sigma=\{10,2,0\}$

- Then: $\operatorname{rank}(\boldsymbol{A})=2$

\square Proof:

- For any \boldsymbol{x}, the output is $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*} \boldsymbol{x}$
- Define $\boldsymbol{z}=\boldsymbol{U}^{*} \boldsymbol{y}$ and $\boldsymbol{w}=\boldsymbol{V}^{*} \boldsymbol{x}$
- Then $z_{\ell}=\sigma_{\ell} w_{\ell}$
- If $r=\left|\left\{\sigma_{\ell}>0\right\}\right|$, then $\sigma_{\ell}>0$ for $\ell=1, \ldots, r$
- Hence, by varying w_{ℓ}, we can span a space of dimension r

$A=U \cdot \Sigma \cdot V^{*}$

Sum of Rank One Form

\square Suppose $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*} \in \mathbb{F}^{M \times N}$ with $r=\operatorname{rank}(\boldsymbol{A})$ \square Then:

$$
\boldsymbol{A}=\sum_{\ell=1}^{r} \sigma_{\ell} \boldsymbol{u}_{\ell} \boldsymbol{v}_{\ell}^{*}
$$

- A sum of rank one terms $\boldsymbol{u}_{\ell} \boldsymbol{v}_{\ell}^{*}$
\square The vectors $\boldsymbol{u}_{\ell}, \ell=1, \ldots, r$ are an orthonormal basis for $\operatorname{Range}(\boldsymbol{A})$
\square The vectors $\boldsymbol{v}_{\ell}, \ell=1, \ldots, r$ are an orthonormal basis for $\operatorname{Range}\left(\boldsymbol{A}^{*}\right)$

Outline

\square Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
\square Array Factor
\square Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
\square Linear Algebra and SVD Review
Beamforming Gains in Multipath Channels
\square Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

SVD of the Channel Matrix

\square Consider a MIMO channel matrix: $\boldsymbol{H}=\sum_{\ell=1}^{L} \sqrt{E_{\ell}} e^{\theta_{\ell}} \boldsymbol{u}_{r x}\left(\Omega_{\ell}^{r x}\right) \boldsymbol{u}_{t x}^{T}\left(\Omega_{\ell}^{t x}\right)$

- $E_{\ell}=$ RX energy per antenna on path ℓ
- $\theta_{\ell}=$ phase that varies with frequency and time
\square We can write this as: $\boldsymbol{H}=\sum_{\ell=1}^{L} \sigma_{\ell} \widehat{\boldsymbol{u}}_{\ell} \widehat{\boldsymbol{v}}_{\ell}^{*}$ where
- $\widehat{\boldsymbol{u}}_{\ell}=\frac{1}{\sqrt{N_{r x}}} e^{\theta_{\ell}} \boldsymbol{u}_{r x}\left(\Omega_{\ell}^{r x}\right)$ and $\widehat{\boldsymbol{v}}_{\ell}=\frac{1}{\sqrt{N_{t x}}} \overline{\boldsymbol{u}}_{t x}\left(\Omega_{\ell}^{t x}\right)=$ normalized steering vectors
- $\sigma_{\ell}=\sqrt{E_{\ell} N_{r x} N_{t x}}$

\square Interpretation:

- $L=$ number of paths = rank of H
- If the signatures $\widehat{\boldsymbol{u}}_{\ell}$ and $\widehat{\boldsymbol{v}}_{\ell}$ are orthogonal then they are the left and right singular vectors
- In this case, singular values squared $\sigma_{\ell}^{2}=E_{\ell} N_{r x} N_{t x}=$ RX energy \times beamforming gain

Beamforming on a MIMO Channel

\square Consider MIMO channel, $\boldsymbol{r}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{v}, \boldsymbol{H} \in \mathbb{C}^{M \times N}, \quad \boldsymbol{v} \sim C N\left(\mathbf{0}, N_{0} \boldsymbol{I}\right)$

- Channel on time and frequency resource
\square Apply TX beamforming: $\boldsymbol{x}=\boldsymbol{w}_{t x} S$
- Assume $\left\|\boldsymbol{w}_{t x}\right\|=1$ so total transmit energy is $E_{s}=E|s|^{2}$
\square Apply RX beamforming: $z=\boldsymbol{w}_{r x}^{T} \boldsymbol{r}$
- Assume $\left\|\boldsymbol{w}_{r x}\right\|=1$ so total received noise energy $E\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{v}\right|^{2}=\mathrm{N}_{0}$
\square Equivalent channel: $z=\boldsymbol{w}_{r x}^{T} \boldsymbol{r}=G s+d$,
。 $G=\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}=$ complex beamformed channel gain
- Noise energy is $E\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{v}\right|^{2}=\mathrm{N}_{0}$
\square SNR with beamforming: $\gamma=\frac{|G|^{2} E_{S}}{\mathrm{~N}_{0}}=\frac{\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}\right|^{2} E_{S}}{\mathrm{~N}_{0}}$

Maximizing the SNR

\square From previous slide, MIMO channel with beamforming is $z=G s+d$,

- Gain: $G=\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}$
- Noise energy $E|d|^{2}=N_{0}$
- SNR: $\gamma=\frac{|G|^{2} E_{S}}{\mathrm{~N}_{0}}=\frac{\left|w_{r x}^{*} H w_{t x}\right|^{2} E_{S}}{\mathrm{~N}_{0}}$
\square Want to select the beamforming vectors to maximize the SNR:

$$
\max _{\boldsymbol{w}_{r x}, \boldsymbol{w}_{t x}}\left|\boldsymbol{w}_{r x}^{T} \boldsymbol{H} \boldsymbol{w}_{t x}\right|^{2} \text { s.t. }\left\|\boldsymbol{w}_{t x}\right\|=\left\|\boldsymbol{w}_{r x}\right\|=1
$$

Theorem: Let $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$ be the SVD. Then, then the optimal vectors are

- $\boldsymbol{w}_{r x}=\overline{\boldsymbol{u}}_{1}=$ conjugate of the left singular vector for maximal singular value
- $\boldsymbol{w}_{t x}=\overline{\boldsymbol{v}}_{1}=$ conjugate of the right singular vector for maximal singular value

Also, the max value is $\sigma_{1}^{2}=$ maximum singular value squared

CSI Requirements

\square Optimal BF vectors are maximal singular vectors of channel matrix \boldsymbol{H}
\square Problem: TX and RX must know \boldsymbol{H} exactly

- Channel state information (CSI) must be available at TX and RX
- In general, \boldsymbol{H} varies with time and frequency
- Hence channel needs to be tracked!
\square Next lecture we will discuss:
- How to track channel in practical systems
- Methods to approximate beamforming if exact tracking is not possible

Outline

\square Antenna Arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain with a Single Path
\square Array Factor
\square Transmit Beamforming with a Single Path
\square Multipath and MIMO Channels
\square Linear Algebra and SVD Review
\square Beamforming Gains in Multipath Channels
Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Modeling the Element Pattern

Above analysis assumes each element is omni-directional
DHowever, in most systems, each antenna element may also have gain.
DIn this section, we describe two methods to account for element gain
DMethod 1. Pattern multiplication without normalization

- Provides a simple approximation of the channel response
- But neglects mutual coupling

Method 2. Pattern multiplication with normalization

- More accurate
- Partially accounts for mutual coupling

SiBeam 60 GHz array

12 TX and 12 RX elements.

Uncoupled Array Assumption

\square Consider a TX array with N elements in free space

- Analysis for RX is similar
\square In isolation, we know each TX signal s_{n} will produce an $R X$ signal

$$
r=g_{0} s_{n} u_{n}(\Omega) A_{E}(\Omega)
$$

$$
r=\sum_{n=1}^{N} g_{0} s_{n} u_{n}(\Omega) A_{E}(\Omega)=g_{0} A_{E}(\Omega) \boldsymbol{s}^{T} \boldsymbol{u}(\Omega)
$$

- This is the assumption we have made implicitly up to now

Pattern Multiplication

\square Previous slide shows that ignoring mutual coupling, the TX channel response is:

$$
\boldsymbol{h} \approx g_{0} \boldsymbol{v}_{0}^{T}(\Omega), \quad \boldsymbol{v}_{0}(\Omega)=A_{E}(\Omega) \boldsymbol{u}(\Omega)
$$

\square We call $\boldsymbol{v}(\Omega)$ the pattern multiplication signature or un-normalized spatial signature

- Multiplication of the array spatial signature with the element pattern

\square Key properties:

- TX channel is $\boldsymbol{h}=g_{0} \boldsymbol{v}(\Omega)$
- Optimal BF vector $\boldsymbol{w}(\Omega)=\frac{1}{\left\|v_{0}(\Omega)\right\|} \bar{v}_{0}(\Omega)=\frac{1}{\sqrt{M}} \overline{\boldsymbol{u}}(\Omega)$
- Optimal BF gain $\left|\boldsymbol{w}(\Omega)^{T} \boldsymbol{v}_{0}(\Omega)\right|^{2}=\left|A_{E}(\Omega)\right|^{2} M=$ peak element gain \times peak array gain
- Array factor is $A F\left(\Omega, \Omega_{0}\right)=\left|\boldsymbol{w}\left(\Omega_{0}\right)^{T} \boldsymbol{v}_{0}(\Omega)\right|^{2}=\frac{1}{M}\left|A_{E}(\Omega)\right|^{2}\left|\boldsymbol{u}^{*}\left(\Omega_{0}\right) \boldsymbol{u}(\Omega)\right|^{2}$

Impedance and Resistance Matrices

To model mutual coupling, we need some simple network theory
\square The input to an array can be modeled as an N port network

- Each "port" has an input current I_{n} and voltage V_{n}
- Physically, the port would be the antenna feed
- The currents and voltages are represented in complex baseband
\square Any N port network is characterized by an $N \times N$ impedance matrix \boldsymbol{Z}

$$
V=Z I
$$

- I and \boldsymbol{V} are the vector of currents and voltages
- The impedance matrix accounts for coupling between ports
\square The real power consumed in the network is

$$
P=\frac{1}{2} \operatorname{Real}\left(\boldsymbol{I}^{*} \boldsymbol{V}\right)=\frac{1}{2} \operatorname{Real}\left(\boldsymbol{I}^{*} \boldsymbol{Z} \boldsymbol{I}\right)=\frac{1}{2} \boldsymbol{I}^{*} \boldsymbol{R} \boldsymbol{I}
$$

- $\boldsymbol{R}=\frac{1}{2}\left(\boldsymbol{Z}+\boldsymbol{Z}^{*}\right)=$ Hermitian part of Z. Called the resistance matrix

Normalized Steering Vector

\square To account for coupling between antennas, define the normalized spatial signature

$$
\boldsymbol{v}(\Omega)=\boldsymbol{Q}^{-1 / 2} A_{E}(\Omega) \boldsymbol{u}(\Omega), \quad \boldsymbol{Q}=\int_{-\pi}^{\pi} \int_{-\pi / 2}^{\pi / 2}\left|A_{E}(\Omega)\right|^{2} \boldsymbol{u}(\Omega) \boldsymbol{u}^{*}(\Omega) \cos \theta d \theta d \boldsymbol{\phi}
$$

- $\boldsymbol{v}(\Omega)$ is a scaled version of the spatial signature with pattern multiplication $\boldsymbol{v}_{0}(\Omega)$
- \boldsymbol{Q} is called the normalization matrix, $\boldsymbol{Q}^{-1 / 2}=$ inverse of the matrix square root
\square Theorem: The TX channel in free space is $\boldsymbol{h}=g_{0} \boldsymbol{v}^{T}(\Omega)$
- Recall, g_{0} is the free space channel from the reference point in the array
- Proved below using network theory

\square Conclusion: $\boldsymbol{v}(\Omega)$ represents the array response
- Properly accounts for coupling between elements

Normalized Channel Response

\square Theorem: There exists a constant $C>0$ such that if $\boldsymbol{s}=\sqrt{C} \overline{\boldsymbol{Q}}^{1 / 2} \mathbf{I}$:

- The total transmitted power is $\|\boldsymbol{s}\|^{2}$
- The received signal at a point in free space is $r=g_{0} \boldsymbol{v}^{T}(\Omega) \boldsymbol{s}$ where g_{0} is the free space SISO channel
- Received power is $|r|^{2}=\left|g_{0}\right|^{2}\left|\boldsymbol{v}^{T}(\Omega) \boldsymbol{s}\right|^{2}$
\square Proof: Will be done in several slides below

Conclusion: $\boldsymbol{v}(\Omega)$ represents the effective array response

- Properly accounts for coupling between elements

- Based on a transformation of the signals to array

Numerical Procedure for Normalization

\square Get angles $\Omega_{k}=\left(\theta_{k}, \phi_{k}\right), k=1, \ldots, K$ uniformly in $\theta_{k} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \phi_{k} \in[-\pi, \pi]$
\square Get steering vectors $\boldsymbol{u}\left(\Omega_{k}\right)$ and element gain $A_{E}\left(\Omega_{k}\right)$ at each angle
DCompute normalization matrix:

$$
\boldsymbol{Q}=\frac{1}{c K} \sum_{k=1}^{K} \cos \theta_{k}\left|A_{E}\left(\Omega_{k}\right)\right|^{2} \boldsymbol{u}\left(\Omega_{k}\right) \boldsymbol{u}^{*}\left(\Omega_{k}\right), \quad c=\frac{1}{K} \sum_{k=1}^{K} \cos \theta_{k}
$$

- Scale factor c used to normalize the summation
-The normalized steering vector at any new angle Ω is $\boldsymbol{v}(\Omega)=A_{E}(\Omega) \boldsymbol{Q}^{-1 / 2} \boldsymbol{u}(\Omega)$
\square The complex gain with beamforming vector \boldsymbol{w} is $\boldsymbol{w}^{T} \boldsymbol{v}(\Omega)$
- Power gain $G=\left|\boldsymbol{w}^{T} \boldsymbol{v}(\Omega)\right|^{2}$

Array Element Example

DElement:

- Patch Microstrip
- Max gain 10 dBi gain

DArray: 4x4 URA

- Max gain = $10 \log _{10} 16=12 \mathrm{dBi}$
- Has directivity in back and front

Array Factor Examples

For each target angle:

- Find optimal BF vector
- Compute resulting array factor
\square Array factor computed for
- No normalization (approximate)
- Normalization
\square We see approximation is close
- But overestimates peak gain

$$
(\theta, \phi)=(0,0)
$$

$$
(\theta, \phi)=(30,45)
$$

No normalization

Peak gain 15.5 dBi

Normalization

Max Gain

DPlotted:

- Max gain in each angle
\square With no normalization:
- Max gain at boresight $=12+10.1=22.1 \mathrm{dBi}$
\square With normalization:
- Max gain at boresight= 18.3 dBi
- Max gain at other angles more uniform

Proof Part 1: Analyzing in Current Domain

Let $I=\left[I_{1}, \ldots, I_{N}\right]^{T}=$ vector of complex baseband current inputs to the antennas
\square Consider electric field at angle $\Omega=(\phi, \theta)$ at far distance d
\square Assume the electric field from a single current I_{n} is:

$$
E(\Omega)=\frac{c}{d} A_{E}(\Omega) u_{n}(\Omega) I_{n}
$$

- $c=$ some proportionality constant
\square We know super-position applies for currents
- This is a consequence of Maxwell's equations

\square Hence with all N currents:

$$
\begin{aligned}
& \text { currents: } \\
& E(\Omega)=\frac{c}{d} A_{E}(\Omega) \sum_{n=1}^{N} u_{n}(\Omega) I_{n}=\frac{c}{d} A_{E}(\Omega) \boldsymbol{u}(\Omega)^{T} \boldsymbol{I}
\end{aligned}
$$

Proof Part 2: Total Radiated Power

DFrom previous slide: Electric field is $E(\Omega)=\frac{c}{d} A_{E}(\Omega) \boldsymbol{u}^{T}(\Omega) \boldsymbol{I}$
-Hence, power intensity is $U(\Omega)=\frac{d^{2}}{2 \eta}|E(\Omega)|^{2}=C\left|A_{E}(\Omega) \boldsymbol{u}^{T}(\Omega) \boldsymbol{I}\right|^{2}$

- $C=\frac{|c|^{2}}{2 \eta}, \quad \eta=$ characteristic impedance

DHence, the total radiated power is:

$$
P_{t x}=\int U(\Omega) d \Omega=\int_{-\pi}^{\pi} \int_{-\pi / 2}^{\pi / 2} U(\phi, \theta) \cos \theta d \theta d \phi=C I^{*} \overline{\boldsymbol{Q}} \boldsymbol{I}
$$

-Here $\boldsymbol{Q}=\int_{-\pi}^{\pi} \int_{-\pi / 2}^{\pi / 2}\left|A_{E}(\Omega)\right|^{2} \boldsymbol{u}(\Omega) \boldsymbol{u}^{*}(\Omega) \cos \theta d \theta d \phi$
$\square \overline{\boldsymbol{Q}}=$ elementwise complex conjugate of \boldsymbol{Q}

Proof Part 3: Array Resistance Matrix

\square From previous slide we saw that :

$$
P_{t x}=C \boldsymbol{I}^{*} \overline{\boldsymbol{Q}} \boldsymbol{I}
$$

- $\overline{\boldsymbol{Q}}$ can be computed from the integral of spatial signatures
\square We know from network theory the power consumed is $\frac{1}{2} I^{*} R I$
- $R=$ resistance matrix of the array
\square If the antennas are lossless, this power must be transmitted
\square Hence $P_{t x}=\frac{1}{2} \boldsymbol{I}^{*} \boldsymbol{R} \boldsymbol{I}$
\square Conclusions:
- The matrix $\overline{\boldsymbol{Q}}$ is a scaled version of the antenna array resistance matrix

- The matrix captures the coupling of currents and voltages between antennas

Proof Part 4: Computing the Channel

DUp to now we have shown:

- Total transmitted power is $P_{t x}=C I^{*} \overline{\boldsymbol{Q}} \boldsymbol{I}$
- Radiation intensity at angle Ω is $U(\Omega)=C\left|A_{E}(\Omega) \boldsymbol{u}^{T}(\Omega) I\right|^{2}$
\square Define:
- Power input vector: $\boldsymbol{s}=\sqrt{C} \overline{\boldsymbol{Q}}^{1 / 2} \mathbf{I}$
- Normalized steering vector: $\boldsymbol{v}(\Omega)=A_{E}(\Omega) \boldsymbol{Q}^{-1 / 2} \boldsymbol{u}(\Omega)$
\square With these definitions:
- Total transmitted power is $P_{t x}=C I^{*} \boldsymbol{Q I}=\|s\|^{2}$
- Radiation intensity at angle Ω is $U(\Omega)=C\left|A_{E}(\Omega) \boldsymbol{u}^{T}(\Omega) \boldsymbol{I}\right|^{2}=\left|\boldsymbol{v}^{T}(\Omega) \boldsymbol{s}\right|^{2}$

Hence $\left|\boldsymbol{v}^{T}(\Omega) s\right|^{2}$ is the power gain relative to free space propagation
Therefore, channel can be modeled as $g_{0} \boldsymbol{v}^{T}(\Omega) \boldsymbol{s}$ is the free space channel

