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Antenna Arrays

JAntenna arrays: Structure with multiple antennas
o At TX and/or RX

o Key to 5G mmWave and massive MIMO
dTwo key benefits

dBeamforming: This lecture
o Concentrate power in particular directions
o Increases SNR and may enable spatial diversity
o Requires arrays at either TX or RX

WSpatial multiplexing: Later
o Enables transmission in multiple virtual paths
o Increases degrees of freedom
o Requires multiple antennas at both TX and RX
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IBM 28 GHz array

32 element dual
polarized array

Sadhu et al, ISSCC 2017

Aurora C-Band Massive
MIMO array

64 elements, 5-6 GHz
https://www.taoglas.com/
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Multiple Receive Antennas

Single Input Multiple Output
o One TX antenna

o M RX antennas j

' SIMO

Transmit a scalar signal x(t)

(JReceive a vector of signals:

o 7(t) = (1, (©), oo, (1))

dWhat is the channel from x(t) to r(t)?

dWant channel in complex baseband
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Channel vs. Position

dConsider single path channel that arrives at origin with:
o Delay 7y, complex gain go, AoA of 0 relative to z-axis

UTransmit signal s(t)

»

RX
Look at RX signal r(x, t) as a function of position x ! " " position

JAssume RX position, x, is close to origin
o Blx| « f.A, B = bandwidth of s(t) r(x,t)

dPhase rotation with displacement:
o Baseband response at x is (proof on next slide):

r(x,t) = p2mjx sin 6/ gos(t — o)

\ J \ )
|
Phase rotation with x / Y'\ Response at x = 0
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Proof of Phase Rotation with Displacement

A

X sin @

(Delay of path at x is: 7(x) = 79 —

c

X sin 6

dHence there is an additional delay: —

v

|
(dBaseband response at x: X

— 21jx sin 6/ _ RX position
r(x,t) = goe s(t —1(x))

Also, S(t — T(X)) ~ s(t —19) if Blt(x) — 79l K 1

dBut, by assumption of small displacement:

Blx| Blx|
Blt(x) — 74| < = K

1
AMe

QHence, r(x, t) = goe?™*sinb/ig(t — 1)
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Response for a ULA

L Uniform Linear array (ULA)
o M antenna positions spaced d apart

dTransmit signal s(t)
o Channel single path with AoA 6, complex gain g

QResponse at position: 7,,(t) = goe?™/(-1dsin 8/dgp _ 1

UIn vector notation, we can write 1(t) = hs(t — 1)
o his the channel vector

eanOd sin6/A

h=g ; = gu(8)
eZth(M—l)d sin@/A
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Response Decomposition

For a single path channel, the channel vector has two components:

r(t) = h(0)s(t —10),  h(6) = gu(6)

Scalar channel gain, g
o Complex channel gain at a reference position in the array

WVector spatial signature, u(0)

eanOd sin@/A

> u(f) = :
82nj(M—1)d sinf@/A

o Vector of phase shifts from the reference
o Also called the steering vector (reason for name will be clear later)
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Array Response in 3D

dMany arrays place elements over 2D area

QUniform rectangular array (URA):
o M X N grid of elements

° Spaced dy and d,,

o Also called uniform planar array (UPA)

Uincident angle Q = (¢, 0)

o (Azimuth, elevation) or (azimuth, inclination)

USpatial signature:
° Umn(Q) = complex response to antenna (m, n)

° U, (Q) = exp [% (md, sin 6 cos ¢ + nd,, sin 6 sin qb)]
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Mutual Coupling

The above formulas assume there is no mutual coupling % [3) %‘
dMutual coupling: A
o Signals on one antenna scatter to another antenna (5) (©) (1)
o Changes the antenna response
dMutual coupling effect is typically large when:
o Antennas are close
o Or arrays are combined with highly directive elements
dWe will show how to account for mutual coupling at the end of unit —— —L
Antenna 4, Antenna 4,

Wang, Zhengzheng. “Complete tool for
predicting the mutual coupling in non-uniform
arrays of rectangular aperture radiators.” (2017).
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MATLAB Phased Array Toolbox

QPowerful toolbox

Design and simulate phased drray signal progessing

JRoutines for: LR

® Watch video § Download a free trial

o Defining and visualizing arrays

[¢]

Computing beam patterns

[¢]

Beamforming
MIMO : 0
Radar |

[¢]

(o]
L
(=]

o

[ r3
h (=]
Normalized Power (dB)

W
=1

&
n

B
3

-45

AzD
El 0
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Example: Defining a ULA

dDefine and view the array Unifor Linear Aay (ULA

Can display array:

o Using viewArray command o’
@
> Or, manually o’
°]
@
%% Tniform Linear Array . .
% We first define a simple uniform linear array Eix
fc = 28e95; % fregquency
lambda = physcunski':;ghtjpeeﬂ']ffc:
dsep = 0.5*1ambda; % element spacing
nant = 8; ¥ Number of elements
arr = phased.ULA (nant, dsep) 0.02 3 ' ' '

00151 [o]
% View the array 001 .

viewhArray (ula, 'Title', 'Uniform Linear Array (ULA) ") 0.005 |
1 o
o
elemPos = arr.getElementPosition() ; -0.005 )
clf{'reset"): e )
plot (elemPos=s (1, :), elemPos(2,:), "o'): e :

002 ‘ ‘ ‘ ‘ . . . .
1 08 06 04 02 0 02 04 08 08
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Computing the Spatial Signature

dCompute the spatial signature with the SteeringVector object

% Create a steering vector object

; & 550 6
sv = phased.S5teeringVector ('SenscrArray',arr) ; - yd

\

L y p I I -
- . 0.8 |J’ ||I I||I |'| II"- I||
% Angles tCo compute the 5Vs o :ﬂ “ H H’ﬂ f
npts = 361; I '|I ||'| * | I
az = linspace(-180,180,npts); 0.4 ﬂ /| H bl | |

1 |
- |
el = zeros(l,nptsa): 2 2z ﬂ ” “ f f% | Jf |
= . . — |
ang [az: =1]: % | J| |H | A ﬂ (
a of IR [ I 7
2 Il L
% Matrix of steering vectors B ool | || || |f
% This is an nant X npts matrix in this case i

u = svifc, ang):

=
B
T

=
=]
T

% Plot of the real components | Hf ﬂﬂ| ﬂ \ﬂ|

plot (az, real{u)'): 08 hj! Hﬂ '\ h ) 1
grid on: 1 VY YUY | Al

xlabel {("Rzimuth (deg)") -200 .D 150 200
vlabel ('Eeal spatial sig'): Azimuth (deg)
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Example: Defining a URA

dDefine and view the array

0.01 T T T T T
(dUse the phased.URA class o). < . . . o
. . . 0.006 [~ =
(JCan compute steering vector similarly
0.004 -
s} ) (o] Q Q (o] (o] s}
% Construct the array LU B
nant = [4,8]: N oL i
dsep = 0.5%lambda;
arr = phased.URA (nant,dsep, "ArravHormal', "x"); 0.002 |- =
O o (o] Q (o] o o @]
% Plot the array. 000 ]
% You can also use, arr.viewhArrav() s/ i
elemPos = arr.getElementPosition() !
clf({'reset'); 0.008 - © o o o o o o o
plot (elemPos (2, :), elemPos(3,:), 'o'): oot ‘ | | | | ‘ |

grid oz -0.02 -0.015 0.01 -0.005 0 0.005 0.01 0.015 0.02
xlabel('yv'):
ylabel("z");

A 4 x 8 URA with normal axis aligned on x
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Multiple Antennas in Commercial Systems

dSub 6 GHz systems: Mostly 1 to 4 antennas on base stations or smart phones

(dForm factor restricts larger number of antennas

k
.
TT
WiFi Router
Linksys AC2200 with 4TX/RX 2x2 LTE base station antenna
Cros-polarization K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S.
16 dBi element gain, 90 deg sector He, "Body-Insensitive Multimode MIMO
750x120x60mm Terminal Antenna of Double-Ring Structure,"

in IEEE Transactions on Antennas and
Propagation, vol. 63, no. 5, pp. 1925-1936, May
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Massive MIMO

(dMassive MIMO:

o Many base station antennas Role of Active vs. Passive Antennas
° 64 to 128 in many systems today SngleAmetna  mommo ecemmo oMo MiMo
N - X X = T
Significant capacity increase ¥ x| ___[x | S
> X X anonae e
o Typically 8x by most estimates g X

x
QUse SDMA o B

|
1
1
I
I
!
!
|
1
I
4

o Will discuss this later

I
I
I
I
1
I
I
e

&
I

RF ; . |
Coatx Fiber Fiber Fiber Fiber
Fronthau Fronthaul Fronthaul Fronthaul
(o] (=)
Generation 1 Generation 2 Generation 3 Generation 4
Base Transceiver Stafion fomofe Aadio Haad Integrated Antenna Radi integrated Anfenna Radio
Achive Arlanng Sysem Active Anfenna Systam

1990 20167
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Beamforming and MmWave

dTo compensate for high isotropic path loss, mmWave systems need large number of antennas

[5G handsets: Multiple arrays with 4 to 8 antennas each

L5G base stations: 64 to 256 elements
IBM 28 GHz array
32 element dual

5G mmW Beamforming Module

Cellular IF-Radio b 80 mm, } 58 een¥ Baareforming Moduls
et D i ———— e N [ e PP ,
= — ~ i s B e e polarized array
3 . : “F' BF 1 (O (=) BF Module 2 MI_“-: : EEEN
I o = B g D TR Sadhu et al, ISSCC 2017
imie 3 F H = B S Sk e
= -
1 rOCRKRce
160 mm : :: : " :: : E St Besis
Baseband P .: cccccc H:“: :-I; .
% | | -—_——'-.____._ Bamry e [ —
! =
|
et Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user
| equipment." 2018 IEEE 5G World Forum (6GWF). IEEE, 2018.
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RX Beamforming

Consider a general channel: r = hx + n
o 1input, M outputs

dBeamforming: Take a linear combination of signals
oz =wlr=Y.w:r:
Z=W'T=2,Wr;

o w is called beamforming vector for multiple antennas

Creates effective SISO channel:

z=wlr=Whx+wn= ax + v

o 1input x, 1 output symbol z
o Gain: a =w'h
> Noise: v =w'n
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Conjugate Transpose Conventions

dFor beamforming, we will use the following conventions

dComplex conjugate of a complex scalar z = a + bi is denoted Zz = a — bi
X1
dUnless otherwise specified, vectors are column vectors: x = [ : ]
XTL

OTranspose: xT = [X1 = Xg]

Conjugate transpose: x* = [x; -+ xp]

X1
JElementwise conjugate: x = [ : ]
Xn
o Takes conjugate of each element but keeps x a column vector
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Beamforming Analysis

CLinear combining: z = w!ir = Wh)x + win
> Gain: a = wl'h

> Noise: v =w'n hy
JAnalysis: Let j
o E, = E|x|? = average symbol energy ™ h,

o Assume noise n,,~CN (0, Ny) (i.i.d. complex Gaussian noise)

dThen, after combining;
> Signal energy = |w! h|?E,
> Noise: v is Gaussian with E|v|? = ||w]|*N,
o SNRis:
_ [w'h|?E,
"7 wiEng
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Maximum Ratio Combining

From previous slide: SNRisy = +————
0

T 1 12
: : o " . w' h| E
dMaximum ratio combining: Select BF vector to maximize SNR: W = arg max—lllwllle
w 0

dTheorem: The MRC weighting vector and maximum SNR is:

w
_ E
[ W =ch= yyrc = ||h||2—x J
Ny

=

o Any constant ¢ # 0 can be used. Constant does not matter
o Align BF vector with the conjugate of the channel

Also called conjugate beamforming
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Proof of the MRC Solution

(wTh|”Ey

dWe want to maximize w = arg max IWIZNe

Double conjugate

R'w = Zwlh —Zwlh — |wTh|

dWrite the inner product as:

|R*w|’Ey
Hence, we want to maximize w = arg max
lwll“Ng
— 2 —
dFrom Cauchy-Schwartz: | *w| = ||w||2||h|| cos 0

2 Eyx

> Hence, y = ||h|| cosH = ||h||? xcos@

o Maximized with cosH =10 = O

dSo, we take w = ch
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MRC Gain

SNR with MRC: yyge = [[R]|2 2
0

.. _ |hi|2Ex
LSNR on channel iis: y; = y
0
Average SNR is: Yavg = 3, 4i=1Yi = 3 i=1lhil N M ||l No

(UMRC increases SNR by a factor of M relative to average per channel SNR
YMRC — M

Beamforming gain =

Yavg

JExample: Suppose average SNR per antenna is 10 dB.
o With M = 16 antennas and MRC, SNR = 10 + 101log;,(16) = 10 + 4(3) = 22 dB

o @Gain increases significantly!

dNote: The gain assumes no mutual coupling.
o Once antennas are close, the gain will no longer increase by M
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Single Path Channel Case

Consider special case of single path channel: r = gou(Q)x + n
o Channelis h = gyu(Q)

SNR per antenna (before beamforming):

Exlgol? Exlgol?
© Yo = T [um (@)1 ==

o Assume u,, ({2) includes only phase shifts

|wTu(Q)|2
LISNR after BF: Y = W]/O

QAMRC beamforming: w = cu(Q) andy = [[u(Q)||?*y, = My,

W Conclusions:
o Optimal (MRC) beamforming vector is aligned to the conjugate of the spatial signature
o Optimal SNR gain = M (assuming no mutual coupling)
o Linear gain with number of antennas
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Example Problem

dConsider a system
o TX power = 23 dBm with antenna directivity = 10 dBi

° Free space path loss d = 1000 m

(e]

Sample rate = 400 Msym/s
Noise energy = -170 dBm/Hz (including NF) SHE el ant.: o.59
&

RX antenna directivity = 5 dBi and 8 elements SHNE with MR- 5

(e]

(o]

Find SNR per antenna and SNR with MRC
dSolution: We get a9 dB gain!

plommi = f£=spl (dist, lamhda]ﬂ
EsNOAnt = ptx - plomni - 10%loglO(bw) - Enoise 4+ dirtx + dirrcx:;

% SHE with MREC
EsHNOMEC = EsNO + 1l0%logl0 (mantrx);
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In-Class Problem: Simple QPSK simulation

dSimulate QPSK transmission over a single path channel
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Array Factor

dSuppose RX aligns antenna for AoA Qy = (08, ¢o)

LBut signal arrives from AoA Q) = (6, ¢)

Actual arrival
(dDefine the (complex) array factor

1
AF(Q, Q) = W' (Qp)u(Q) = —u*(Q)u()
R \/M [¢) BF direction
o Assume ||W|| = 1 Q,

o Indicates directional gain as a function of AoA 6 Array >
o Dependence on 6, often omitted

QSNR gain = |AF(Q, Qy)|?
o Max value=M
o Usually measured in dBi (dB relative to isotropic)
o Also called the array response
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Uniform Linear Array

Spatial signature (for azimuth angle ¢):

o u(p) = [1,€/5, ... pi(M— 1)3] 27Td/6105¢ Arrival

o Note change from sin 8 to cos (l). (Array aligned on y-axis)

) BF direction
dOptimal BF vector for AoA ¢, bo

o w(gy) = u(gbo) (Note normalization)

> X

JArray factor:

1
AF (¢, ¢g) = \/—MU*(CPO)U(QD =

— (cos ¢ — cos ¢y),

sin?(My/2)
M sin2(y/2)

e/ M=1¥/2 5in(My/2)
VM sin(y/2)

QdAntenna gain: |AF|? =
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Antenna Gain for ULA

d=21/2, M=28

Broadside: 6, = 0 Endfire: 8, = 90
theta0 = 0 theta0 = 90 dMaximum gain of
J ﬂ f | | dNote:
o Endfire vs. broadside
| ' | ' o Beamwidth « 1/M
o R YRR (Y
=5 < Broadside
10l | o |\ ﬂ I\ End fire\
1| =
15| : 15 q I q | Ry
=0 -160 -100 -50 EIP 50 100 150 20 -150 —‘1IDD -50 0 50 ‘1EIPD 150 -
Azimuth Azimuth
PeRO®E86 L
;L.. -A%L

((/1 TANDON SCHOOL
NYU | saesises



Plotting the Array Factor

for iplot = l:nplot

Dcreate a SteerlngVGCtOF ObJeCt % Get the 5V for the beam direction.

% Hote: You must call release method of the sv
DGet Steerln Vectors % before each call since it expects the same size
g % of the input
angl = [azPlot (iplot),; 0];

sv.release();

dCompute inner products

uld = sv(fc, angl):;

% Normalize the direction

sv = phased.S5teeringVector ('SensorfArray',arr) !

ul = ul f norm{ud) ;
* Reference angles to plot the AF % Get the SV for the BoRs. Take el=0
azPlot = [0, 50]: npts = 1000;
nplot = length({azPlot): az = linspace (-180,180,npt=);
—— T el = zeros(l,npts);
1o 10 ang = [az; e1]:
. m X sv.release();
u = sv(fc, ang):
0 0
= = % Compute the AF and plot it
g—ﬁ i 5 AF = 10*1logl0( abks(sum(conj (ul).*u, 1))."2 }:
0 0 % Plot it
s s subplot (1, nplot,iplot) ;
plot(ang(l,:), AF, 'LineWidth', 2):;
=0 -150 -100 -50 0 50 100 150 =0 -150 -100 -50 0 50 100 150

Azimuth Azimuth =nd
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Polar Plot

Useful to visualize in polar plot % Polar plot
AFmin = -30;
Note key features: subplot (1, nplot, iplot) ;
o Direction of maximum gain polarplot (deg2rad({az), max(AF, AFmin), 'LineWidth', 2):
o Sidelobes rlim([AFmin, 10]};
grid on;

o Pattern repeated on reverse side

thetal=0 thetal = 45
90 a0
120 10 60 120 10 60
0 0
150 ; 30 150 30 150 30
180 0 180 0 180 0
210 330 210 330 210 330
240 300 240 300
270 270 270
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Key Statistics

Full null beamwidth
(zero to zero)

Half power beamwidth
(-3dB to -3dB)

First sidelobe level

dFrom Jacobs University slides

Broadside (fy = Tf 2)

End-fire (&) = 0}

FNBW | 2 [£ —cos™ ()] | 2cos™ (1 - =%
(30°) (83°)
HPBW | 2[5 —cos! (BR)] | Zeow " (1 130)
(13° (54*
S— ;
FSLL (5] %‘sm( =
(-13 dB) (-13 dB)
Dy Zﬁ"&f«\ 4NA/A
(9 dB) (12 dB)

dValuesin () for:d =41/2, M =8
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Grating Lobes

NYU

JdWhen d > %

(JObtain multiple peaks

(dDoes not direct gain in one direction

g
N

T HNumker of elements

dsep = 2%¥lambda; % element spacin
nant = 8;

arr = phased.ULA (nant,dsep) ;

% Get the 5V for the beam direction.
angd = [0y 0]:

sv.release ()

uld = svifc, angl):

arr.patternfzimath (fc, "Weights", ud);
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Plotting the Patterns

(MATLAB has excellent routines for 3D patterns

(Note that this plots directivity not array factor

sv = phased.SteeringVector ('5Sensorhrray’,arr); A el Gt (requency =28 619
ang0 = [0; 0]:
sv.release ()
uld = sv(fc, angl):
ul = ul / norm(ud):

X
Az 0
EID
% We can plot the directivity in a 3D plot elPlot = [0 45]:
arr.pattern(fc, '"Weights', ul); arr.patternfAzimuth (fc, elPlot, 'Weights', ul):

@ TANDON SCHOOL
NYU | Zroonssioo




Outline

JAntenna Arrays and the Spatial Signature

(JReceive Beamforming and SNR Gain with a Single Path
JArray Factor
‘Transmit Beamforming with a Single Path
dMultipath and MIMO Channels
Linear Algebra and SVD Review
dBeamforming Gains in Multipath Channels

JAdding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

@ TANDON SCHOOL
NYU | Zroonssioo




Multiple TX antennas

MISO channel
o Multiple input single output
o M TX antennas, 1 RX antennas ) )
T j
o Transmit vector: x(t) = (xl(t), ...,xM(t)) -
o Scalar RX: r(t)

el S

o

(dMost of the theory is identical to the SIMO channel
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Single Path Channel

First consider single path channel

Similar to the SIMO case, RX signal is:

r(t) = goA(@u' (Wx(t — 1) 72

° go path gain Q
o () = angle of departure ° \
o T = path delay o " ©
o
o u(Q) TX spatial signature RX with single
o A(L)): complex TX element gain TXarray antenna

TX and RX spatial signatures are identical
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TX Beamforming

QRX signalis: 7(t) = gou! (V) x(t — 1) + n(t)

dTX beamforming
o Input scalar information signal s(t)
o Create vector signal to antennas: x(t) = w s(t)

Signal to antenna i is: x;(t) = w;s(t)
o w; is a complex weight applied to signal

dw is called the TX beamforming vector
o Also called pre-coding

TANDON SCHOOL
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Q
B —— »0 >
°
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Scalar N signals
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SNR with TX Beamforming

QRX signalis: 7 = gou! (W)x +n
o Drop dependence on time to simplify notation

QAWwith x = ws SISO channelisr = gou’ (Q)ws +n

Total transmitted energy across all N TX chains is: w RX
2 TX BF vector 0

° Ey = Z|Wj| E = ||w||*Es

> To keep constant total energy: ||w||? = 1 TX array

o Assumes no mutual coupling ‘ o 0

. 902 ' 0 ]
ASNRisy = ‘i;’o E |[u" (Qw|? = y,lu’ (Q)w]? s(t) x(t) o
g0l Scalar N signals

(e}

Yo No E; is the SNR for a single antenna
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MRC TX Beamforming

OFrom previous slide, SNR is: ¥ = ¥, |u* (Q)w|?

(JTo maximize SNR s.t. power constraint
W = ar T 2 2 _
= arg max |u' (Qw|“ s.t.|w]* =1

1
(MRC TX BF vector: w = mu(ﬂ)

o Align with the conjugate of the spatial signature
> SNR gain = [uT (Q)w|? = N

(Define and compute Array Factor similarly

TANDON SCHOOL
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w RX
TX BF vector 0
J TX array
Q
S >Q >
()
s(t) x(t) e
Scalar N signals



Outline

JAntenna Arrays and the Spatial Signature

(JReceive Beamforming and SNR Gain with a Single Path

JArray Factor

dTransmit Beamforming with a Single Path
‘Multipath and MIMO Channels

Linear Algebra and SVD Review

dBeamforming Gains in Multipath Channels

JAdding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

@ TANDON SCHOOL
NYU | Zroonssioo




MIMO Channel with a Single Path

dMulti-input Multi-Output (MIMO) channel:
o TX array with N; elements
o RX array with N,. elements

2

Single path channel: Qtx

RX array
()
r(£) = gottr ()b (Q)x(t — 1) = Hx(t —7) % 2,
(*) Q‘r‘x (<]
TX array

AMIMO channel matrix for a single path channel:

[ H = gourx(ﬂrx)ur{x(ﬂtx)}
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Beamforming on a MIMO Channel

QConsider MIMO channel, r = Hx + v, H € CM*N, v~CN(0, NyI)
o Channel on time and frequency resource

UApply TX beamforming: x = wy,.s
o Assume ||[w..|| = 1 so total transmit energy is E; = E|s|?

QApply RX beamforming: z = wl, r
o Assume ||W,,|| = 1 so total received noise energy E|wL, v|? = N,

QEquivalent channel: z=wl.r =Gs +d,
o G = wL,Hw,, = complex beamformed channel gain
> Noise energy is E|wL,v|? = N,
2
|G|2Es _ |W¥:xHth| Eg

SNR with beamforming: y = —— = .
0 0
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Beamforming Gain with a Single Path

2
_ _ _ IG|2E wl Hwey| E
From previous slide, we saw SNR on a MIMO channel is: y = . s = [wre N o F
0 0

QSuppose we have a single path channel: H = gyu,.,,(Q™)ul, (Q%%)

Take TX and RX conjugate beamforming vectors:

oW = @ us(0F)
rx \/N_r » Witx \/ﬁt
) 2E Wi QT Orx 2 u* _th u th |2 ZE
EIThen SNR IS]/ — |90| S | rx( ) rx( )| | tx( ) tx( ) — |go| SNrNt
No Ny N¢ No

|go|2Es .
JBut NS the SNR per antenna

0

[ Conclusion: Maximum BF gain on a single path channel is N,.N; }

o Again, assuming no mutual coupling
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Friis’ Law and MmWave

. P, 1 \2
Recall Friis’ Law: — = D,.D; (—)
Py ATCR

Qlsotropic path loss decreases with 12

QMillimeter Wave systems: Increases [
o Decreases 1% = Increase path loss

dBut, with beamforming:
o Directivity D,, < N,- and D; < N;
o Each antenna takes area « 12
o So, for fixed total aperture:

1
D,,ocN,,oc/l—z,DtocNtoc/l—2

(JCan compensate isotropic path loss with directivity
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Friis’ Law and MmWave

No beamforming D; constant PL « f?
Beamforming on one side D, « f?, D, constant PL constant
(TX or RX)
Beamforming on both sides D,, D, « f.? PL o f;2
(TX and RX)

., P, 2 \?
UFriis’ Law: — = D;D, (—)

Pt 41TR

Conclusions: With a fixed aperture and beamforming
o |sotropic path loss can be overcome

But systems need very directive beams
o Raises many other issues. E.g. Channel tracking, processing, ...
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Multiple Paths

(JEasy to extend channel response to multiple paths

(JEach path adds a term with a spatial signature -*W .
S
dTime-domain model .
L i “ diH rection
r(t) = gee? Ot u,, (Ul (Q5)x(t — 1,) + n(t) 18

=1 - 4 4 / —

Doppler shift

Complex gain AoA AoD Delay
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Time-Varying Frequency Response

dThe channel response can also be described as a time and frequency-varying matrix

4 )

L
H(t f) = f_lg{,eZ”J (fet—=Tef) U, (sz)uz:x (ng
~ J

o At time and frequency H(t, f) € CNr>Ne
o Varies in time due to Doppler shifts f,
o Varies in frequency due to delay spread 7,

@ TANDON SCHOOL
NYU | Zroonssioo



OFDM Time-Frequency Grid

Subcarrier (dConsider OFDM channel
spacing ° Sub-carrier spacing Fs., symbol time T,
1
F. = p o Index with kK = OFDM symbol index, n = subcarrier index
>
§ dTransmit array: X|[n, k]
S o At each k,n, we transmit a vector
T
& O X[n k] = [X,[n k], ..., Xy[n, K]
I o N =number of TX antennas
(dReceive array: Y[n, k]:
T
OFDM symbol Y[n k] = |Yi[n k], ..., Yy n k]|
T T o M = number of RX antennas
sym

° One M dim vector per resource element

Time ——
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OFDM Channel with Multiple RX Antennas

(JOFDM channel acts as multiplication:

dUnder normal operation (delay spread is contained in CP):

Y|k,n] = H[k,n] X[k, n]

RX symbol vector Channel matrix ‘mol vector

(JOFDM channel gains can be computed from the multi-path components

L
Hlkon] = ) gpe™™ (omkfefoene) u, (O Yu, (4
£=1

o T = OFDM symbol time, S = sub-carrier spacing
o For each path: f, =Doppler shift, T, =Delay, g, =complex gain
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Outline

JAntenna Arrays and the Spatial Signature

(JReceive Beamforming and SNR Gain with a Single Path
JArray Factor
dTransmit Beamforming with a Single Path
dMultipath and MIMO Channels
‘Linear Algebra and SVD Review
dBeamforming Gains in Multipath Channels

JAdding Element Gains and Normalizing Spatial Signatures for Mutual Coupling
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Orthogonal Vectors

ULletF = Ror C (real or complex)

QVectors x,y € FY are orthogonal if {(x,y) = x*y = 0.
o Writex Ly
o Visually, x L y if they are at 90 degrees

QA set of vectors v, ..., Vx € F¥are orthonormal
° v; Lvjwheni #j
o ||lv;l| = 1foralli
o Vlectors are pairwise orthogonal and unit norm

QdOrthonormal basis: An orthonormal set v, ..., vy € FY
o Any vector can be written x = Y a,,V,,, &, = VX
° a, are the coefficients of x in the basis v4, ..., vy
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Orthogonal and Unitary Matrices

QA matrix U € CN*N is unitary if U*U = UU* = |

QA matrix U € RV*N js orthogonal if UTU = UUT =1
o Orthogonal is just the real-valued version of unitary

(JKey properties:
o U is orthogonal if and only if columns are orthonormal

o U is orthogonal if and only if rows are orthonormal
o Taking an inverse is easy U™ = U*
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Examples of Orthogonal Matrices

cosf sin 6?]

(2D rotation matrix by 6: V = [_ sinf cos@

o Can verify that V'V =1
o 3D rotation matrices are also orthogonal

JExample with 3 vectors:

-1
1

3 —1
1 1
oLetvl—ﬁ[ll,vZ—ﬁ[ZI,173—\/§|:—4]
1 1 7
° Can verify that v;v; = §;;
3/V11 -1/46 —-1/4/66
o Hence the matrix: V = [1/v/11 2/V/6 —4/\/66

1/V11 146 7/V66
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Beamspace Matrices

dConsider a ULA with normalized steering vector:

1 . . T 2md
u(p) =—=|[1,e/Bcos¢ eI IN-1Dfcoso]” L =—
i | 7
Take N angles: S cos ¢,, = 21 (% — % + %), n=01.. N—1
o This is possible if d > %
d=0.50 lambda
UThe vectors u(¢,),n = 0,1, ..., N — 1 are orthonormal o
.B
These are called the beamspace vectors WW“
o An orthonormal basis for the spatial domain - :
210 330
240 300

27l
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Symmetric and Hermitian Matrices

Definition:
o A matrix A € RV*N is symmetricif A = AT
o Amatrix A € CVN*N js Hermitian if A = A*

dSymmetric is the real version of Hermitian

dFor any A symmetric / Hermitian:
o There are an orthonormal set of eigenvectors v4,.., vy with eigenvalues 4, ..., Ay
o All eigenvalues are real (not complex)

QLetV = [vy, ...,vy] € FN*N = Matrix with the eigenvectors as the columns
o Then V = V* is orthogonal / unitary

o Hence A = VDV~*,D = diag(A4, ..., Ay) diagonalizable with unitary
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Sample Problem

Ulet A = [1 2]. Find an orthogonal bases of eigenvectors and their eigenvalues

2 1

dSolution: Eigenvalues:
cdet@l—A)=det[* 71 T2 ]=@-12-4=0
-2 A-1
e A=14+2=-13

QForA=-1,(A1 — A)v = [:; :;] [zﬂ = [8] = v = —v,

o Takev = —=[1,—-1]7

1
5[
dForA=3,(11 —A)v = [

o —— T
Take v = 5 [1,1]

5 Zl=l]=w=v
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Positive Definite Matrices

QLet A = A* € FN*N be symmetric / Hermitian with eigenvalues A4, ..., 1y
o Recall that the eigenvalues are real

Definition:
o A is positive semi-definite if A; = 0 for all i
o A is positive definite if A; > 0 forall i

dNotation: A > 0 for positive definite and A > 0 when A4 is positive semi-definite

dKey property: If A = A™ then:
o A= 0ifandonlyif x"Ax = 0 for all x
o A>0ifandonlyif x*Ax > 0 forallx # 0
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Matrix Square Roots

NYU

QTheorem: Let A € FN*N_ Then A > 0 if and only if A = BB* for some B € FV*M
o Note: The dimension M can be anything (M = NorM < N)

dProof:
o (=) Suppose A = 0. Then A = UDU*,D = diag(Ay, ..., An) A

o

B*

Write B = UDY2U*. D = diag(AY'?, ..., A%/%)

Then: BB* = B?> = UDY2U* UDY?U* = UDU* = A

Since A = B%Z and B > 0, B is called the matrix square root. Write B = A1/2
(&) Suppose A = BB”.

Then for any x, x*Ax = x*BB*x = ||B*x||*> = 0

(e]

(o]

o

(e]
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Singular Value Decomposition

“Tall”’ A, M > N “Fat” A, M <N
N XN M X N MXM MXN
M x N MxM MXN N XN

QGiven matrix A € FM*N an SVD is a factorization of the form, A = UXVT where
o U e FM*M y*U = I, a unitary matrix
o V € FN*N  V*V = I, a unitary matrix

diag(Jl, . O-N)

o fM >N,6X = [ 0
(M—N)XN

] . IfN = M, X = [diag(oy, -, 0m)  Onxm—n]

dVvaluesg; = 0, = - =2 0, = 0, L = min(M, N). Called the singular values
JAIl matrices have an SVD
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Example

Llet 4 =

o o o =
e e R e s

= e O
o o o o
[ Y e R e Y

0

(JThen can checkthat A = UXV*

0 1 0 0 0
00 1 0 2. 0 0 0 0 010 0
U- 0 1 0 5 03 0 0 V'=\| 4402 0 0 0 038
00 0 -1 00 6 0 0 0 0 0
1 0 0 0 0 0 0 | — \ﬁ 0O 0 0 Vm ]

o Also verify that UU™ = Is and V™ = I
o This can be found by (cleverly) permute the rows of A
o But, in general, use a computer to compute SVD
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Geometric Interpretation

ULet A = UXV* and y = Ax

(dConsider a transformed space
ow=V"x sow = [wy,...,wy] are the coefficients of the input in the basis V = [vy, ..., vy]
o z=U"Yy soz = [zq,..,2Zy] are the coefficients in the basis U = [u.. ..., uy]

dThen: z = Xwso z; = g;w; X y
UEach input direction v; is mapped to o;u; A o\ ﬁfl
> >
dConsequence:
o SVD finds orthonormal bases U, VV such that A
matrix A is a linear scaling in each basis vector & U
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SVD and Rank

dTheorem: Suppose A = USV* € FM*N then

{ rank(A) = |{g, > 0}| = num of positive singular values }

X Y

QEx: Suppose A € C>*3 with o = {10,2,0} A 4 :al

o Then: rank(4) = 2 y 4
dProof: A

o For any x, the outputisy = Ax = UXV*x v U

o Definez =U*yandw =V"x

o Then z, = opw, > o2

o Ifr = [{gp > 0}, thenay >0forf =1, ...,r \ NG

o Hence, by varying w,, we can span a space of dimension r A =U-5-V*
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Sum of Rank One Form

QSuppose A = ULV* € FM*N with r = rank(A)
dThen: 4

T
A= 2 agu{)v}
=1

o A sum of rank one terms u,v;

The vectors u,, £ = 1, ...,7 are an orthonormal basis for Range(A)

The vectors vy, £ = 1, ..., 1 are an orthonormal basis for Range(A™)
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OF ENGINEERING

V*




Outline

JAntenna Arrays and the Spatial Signature

(JReceive Beamforming and SNR Gain with a Single Path
JArray Factor

dTransmit Beamforming with a Single Path

dMultipath and MIMO Channels

Linear Algebra and SVD Review

‘Beamforming Gains in Multipath Channels
JAdding Element Gains and Normalizing Spatial Signatures for Mutual Coupling
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SVD of the Channel Matrix

OConsider a MIMO channel matrix: H = Y5_; \/E,e% u,. (Q7)ul, (QF
o E, = RX energy per antenna on path £

o B, = phase that varies with frequency and time
QWe can write thisas: H = Y.5_, 0, 1,0} where

1 0 ~ _ 1
me ‘u,., (Q,*) and v, =

VNex
° 0p = \/E{’erNtx

° U, = Tttx(ﬂf)x)= normalized steering vectors

interpretation:
o I, =number of paths = rank of H
o If the signatures Ui, and v, are orthogonal then they are the left and right singular vectors

o In this case, singular values squared 0{)2 = E,N,, N, = RX energy X beamforming gain
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Beamforming on a MIMO Channel

QConsider MIMO channel, r = Hx + v, H € CM*N, v~CN(0, NyI)
o Channel on time and frequency resource

UApply TX beamforming: x = wy,.s
o Assume ||[w..|| = 1 so total transmit energy is E; = E|s|?

QApply RX beamforming: z = wl, r
o Assume ||W,,|| = 1 so total received noise energy E|wL, v|? = N,

QEquivalent channel: z=wl.r =Gs +d,
o G = wL,Hw,, = complex beamformed channel gain
> Noise energy is E|wL,v|? = N,
2
|G|2Es _ |W¥:xHth| Eg

SNR with beamforming: y = —— = .
0 0
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Maximizing the SNR

A From previous slide, MIMO channel with beamformingis z = Gs + d,
o Gain: G = wl Hwy,

> Noise energy E|d|? = N,

> SNR: _ |G|2Es . |W;xHth|2Es
V= No No

dWant to select the beamforming vectors to maximize the SNR:

max |W’1I:xHth|2 S. L. “th” = ”Wrx” =1
Wrx Wtx

dTheorem: Let H = UXV™ be the SVD. Then, then the optimal vectors are
° W,, = U; = conjugate of the left singular vector for maximal singular value
° W¢, = V7 = conjugate of the right singular vector for maximal singular value
Also, the max value is 0 = maximum singular value squared
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CSI| Requirements

dOptimal BF vectors are maximal singular vectors of channel matrix H

dProblem: TX and RX must know H exactly
o Channel state information (CSI) must be available at TX and RX

° In general, H varies with time and frequency
o Hence channel needs to be tracked!

I Next lecture we will discuss:
o How to track channel in practical systems
o Methods to approximate beamforming if exact tracking is not possible
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Outline

JAntenna Arrays and the Spatial Signature

(JReceive Beamforming and SNR Gain with a Single Path
JArray Factor

dTransmit Beamforming with a Single Path

dMultipath and MIMO Channels

Linear Algebra and SVD Review

dBeamforming Gains in Multipath Channels

‘Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling
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Modeling the Element Pattern

JAbove analysis assumes each element is omni-directional

JHowever, in most systems, each antenna element may also have gain.

in this section, we describe two methods to account for element gain

dMethod 1. Pattern multiplication without normalization
o Provides a simple approximation of the channel response SiBeam 60 GHz array
o But neglects mutual coupling

OMethod 2. Pattern multiplication with normalization 12 TX and 12 RX elements.

o More accurate
o Partially accounts for mutual coupling
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Uncoupled Array Assumption

JConsider a TX array with N elements in free space
o Analysis for RX is similar

in isolation, we know each TX signal s,, will produce an RX signal

r = goSnun(Q)Ag(Q) RXT
° go = free space path gain from a reference location
: . : 0]
o u, () = phase shift due to the element location relative to reference d
> Ag(Q) = complex element gain (assumed common for all elements) TX array
: Q
dUncoupled array assumption: S o R

The response from the N antennas together is given by super-position

N
r= z 9oSnln (DAL (Q) = goAp(Q)s"u()
n=1

o This is the assumption we have made implicitly up to now

@ TANDON SCHOOL
NYU | Zroonssioo




NYU

Pattern Multiplication

dPrevious slide shows that ignoring mutual coupling, the TX channel response is:

[ h =~ gov4(Q), vo(Q) = Ap(Qu(Q) }

dWe call v(Q) the pattern multiplication signature or un-normalized spatial signature
o Multiplication of the array spatial signature with the element pattern

dKey properties:
o TX channelis h = gov(Q)

o Optimal BF vector w(Q) = !

_ 1 _
oy Vo) = )
o Optimal BF gain  |[w(Q)Tv,(Q)|? = |Ag(Q)|*M =peak element gain X peak array gain

o Array factor is AF(Q, Qy) = |[w(Qy)Tv,(Q)]? = % 1A ()2 |u* (Qg)u(Q)|?
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Impedance and Resistance Matrices

JTo model mutual coupling, we need some simple network theory

o The currents and voltages are represented in complex baseband

(JThe input to an array can be modeled as an /V port network /
o Each “port” has an input current I, and voltage V}, 1, /
o Physically, the port would be the antenna feed +
V1

JAny N port network is characterized by an N X N impedance matrix Z
V=1ZI

o I'and V are the vector of currents and voltages
° The impedance matrix accounts for coupling between ports

Coupling

JThe real power consumed in t{1e network is 1 1
P = =Real(I'V) = =Real(I'ZI) ==I"'RI T
5 Rea (rv) 5 Rea ( ) > v

=

o R = %(Z + Z*) =Hermitian part of Z. Called the resistance matrix
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Normalized Steering Vector

To account for coupling between antennas, define the normalized spatial signature

T /2
v@ =@ 24 @u@, = [ 1A:@P u@u @) cos0 dods
—-nJ—-1m/2
o p(Q) is a scaled version of the spatial signature with pattern multiplication v, (Q) RX
o @ is called the normalization matrix, Q‘l/2 = inverse of the matrix square root r
0
Yo
TX arra
QdTheorem: The TX channel in free space is h = g,v' (2) Y q

o Recall, gg is the free space channel from the reference point in the array S o
o

\ 4

o Proved below using network theory

Conclusion: v(£) represents the array response
o Properly accounts for coupling between elements
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Normalized Channel Response

QTheorem: There exists a constant C > 0 such thatif s = VCQ/2I:
o The total transmitted power is || s||?
o The received signal at a point in free space is 7 = gov! (2)s where g, is the free space SISO channel
o Received power is |7]? = |go|?|vT (12)s]?

. . . RX r
dProof: Will be done in several slides below 0
TX array Yo
dConclusion: v(£) represents the effective array response S I S { .
o Properly accounts for coupling between elements o

o Based on a transformation of the signals to array
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Numerical Procedure for Normalization

Get angles Qj, = (0, dx), k = 1, ..., K uniformly in 6, € [_g'ﬂ' ¢y € [—m, ]

Get steering vectors u(£;) and element gain Az (£);) at each angle

(JCompute normalization matrix:

K K
1 1
Q= Ez cos Oy, |AE(QR)|2u(QR)u*(QR): C = EZ cos O
k=1 k=1

o Scale factor ¢ used to normalize the summation

The normalized steering vector at any new angle Q is v(Q) = AE(Q)Q‘l/Zu(Q)

QdThe complex gain with beamforming vector w is w! v(Q)
o Power gain G = |wlv(Q)|?
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Array Element Example

JElement:
o Patch Microstrip

o Max gain 10 dBi gain

dArray: 4x4 URA
° Max gain =10 loglo 16 =12 dBI 3D Directivity Pattern
o Has directivity in back and front :

3
Directivity (dBi)

T

EID

)
=]

s
@

o
=

o
@
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Array Factor Examples

JFor each target angle:
° Find optimal BF vector
o Compute resulting array factor

JArray factor computed for
o No normalization (approximate)
o Normalization

(dWe see approximation is close
o But overestimates peak gain
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Max Gain

Plotted:
o Max gain in each angle

dWith no normalization:
o Max gain at boresight= 12 4+ 10.1 = 22.1 dBi

dWith normalization:
o Max gain at boresight= 18.3 dBi
o Max gain at other angles more uniform
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Proof Part 1: Analyzing in Current Domain

QLetI = [I4,...,Iy]" = vector of complex baseband current inputs to the antennas

Consider electric field at angle Q = (¢, 0) at far distance d

Assume the electric field from a single current [, is:

C
E(Q) =~ As(Dun( @)y "

o ¢ = some proportionality constant ” /
_|_
dWe know super-position applies for currents v,

o This is a consequence of Maxwell’s equations — \

dHence with all N currents:
TX antennan

N
F(Q) = A5(@) ) un(Dly = - Ap(u()"1
n=1

w
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Proof Part 2: Total Radiated Power

RX

From previous slide: Electric field is E(Q) = gAE(Q)uT(Q)I 0 E(Q)
d
2 X
dHence, power intensity is U(Q) = Z—n IE(Q)|? = ClAz(Q)u (Q)I|? ar%
2 | (]
o C = %, n =characteristic impedance — o g
(JHence, the total radiated power is:
T /2 B
P, = [ U(Q)dQ = j j U(p,0) cos 0 dfdp = CI*QI
—nJ—m/2

/2

QHere @ = [7 [, 14p(Q)1* u(Qu"(Q) cos 0 d0d¢

Q =elementwise complex conjugate of Q
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Proof Part 3: Array Resistance Matrix

From previous slide we saw that : _ Iy
Ptx - CI*QI

> Q can be computed from the integral of spatial signatures -

N

JWe know from network theory the power consumed is ;I*RI

o R= resistance matrix of the array Coupling

If the antennas are lossless, this power must be transmitted

(dHence P;, = ZI'RI +

2 Vy

JConclusions:
o The matrix Q is a scaled version of the antenna array resistance matrix

o The matrix captures the coupling of currents and voltages between antennas

=
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Proof Part 4: Computing the Channel

dUp to now we have shown:
o Total transmitted power is P,,, = CI*QI
o Radiation intensity at angle Q is U(R) = C|Az(2D)u’ (Q)I|?

L Define:
o Power input vector: s = VCQ/2]
o Normalized steering vector: v(Q) = Az (Q)Q~Y2u(Q)

dWith these definitions:
o Total transmitted power is Py, = CI*QI = ||s||?
o Radiation intensity at angle Q is U(Q) = C|Az(QD)u’ (DI|?> = |[vT(2)s]|?

QHence |[vT (02)s]? is the power gain relative to free space propagation

QTherefore, channel can be modeled as g, v’ (2)s is the free space channel
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