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Antenna Arrays
Antenna arrays:  Structure with multiple antennas
◦ At TX and/or RX
◦ Key to 5G mmWave and massive MIMO

Two key benefits

Beamforming:  This lecture
◦ Concentrate power in particular directions
◦ Increases SNR and may enable spatial diversity 
◦ Requires arrays at either TX or RX

Spatial multiplexing:   Later
◦ Enables transmission in multiple virtual paths
◦ Increases degrees of freedom
◦ Requires multiple antennas at both TX and RX
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IBM 28 GHz array
32 element dual 
polarized array
Sadhu et al, ISSCC 2017

Aurora C-Band Massive 
MIMO array
64 elements, 5-6 GHz
https://www.taoglas.com/

https://www.taoglas.com/


Multiple Receive Antennas
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Single Input Multiple Output
◦ One TX antenna
◦ 𝑀𝑀 RX antennas

Transmit a scalar signal 𝑥𝑥(𝑡𝑡)

Receive a vector of signals:
◦ 𝒓𝒓 𝑡𝑡 = 𝑟𝑟1 𝑡𝑡 , … , 𝑟𝑟𝑀𝑀 𝑡𝑡 𝑇𝑇

What is the channel from 𝑥𝑥(𝑡𝑡) to 𝒓𝒓 𝑡𝑡 ?

Want channel in complex baseband



Channel vs. Position
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Consider  single path channel that arrives at origin with:
◦ Delay 𝜏𝜏0, complex gain 𝑔𝑔0, AoA of 𝜃𝜃 relative to z-axis

Transmit signal 𝑠𝑠(𝑡𝑡)

Look at RX signal 𝑟𝑟(𝑥𝑥, 𝑡𝑡) as a function of position 𝑥𝑥

Assume RX position, 𝑥𝑥, is close to origin
◦ B|𝑥𝑥| ≪ 𝑓𝑓𝑐𝑐𝜆𝜆, 𝐵𝐵 = bandwidth of 𝑠𝑠(𝑡𝑡)

Phase rotation with displacement:
◦ Baseband response at 𝑥𝑥 is (proof on next slide):

𝑟𝑟 𝑥𝑥, 𝑡𝑡 ≈ 𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆 𝑔𝑔0𝑠𝑠(𝑡𝑡 − 𝜏𝜏0)

𝜃𝜃
RX 
position0 𝑥𝑥

𝑧𝑧

Response at 𝑥𝑥 = 0Phase rotation with 𝑥𝑥

𝑟𝑟 𝑥𝑥, 𝑡𝑡

𝑠𝑠(𝑡𝑡)



Proof of  Phase Rotation with Displacement
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Delay of path at 𝑥𝑥 is: 𝜏𝜏 𝑥𝑥 = 𝜏𝜏0 −
x sin 𝜃𝜃

𝑐𝑐

Hence there is an additional delay: − x sin 𝜃𝜃
𝑐𝑐

Baseband response at 𝑥𝑥:  

𝑟𝑟 𝑥𝑥, 𝑡𝑡 = 𝑔𝑔0𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆𝑠𝑠(𝑡𝑡 − 𝜏𝜏 𝑥𝑥 )

Also, 𝑠𝑠 𝑡𝑡 − 𝜏𝜏 𝑥𝑥 ≈ 𝑠𝑠(𝑡𝑡 − 𝜏𝜏0) if B 𝜏𝜏 𝑥𝑥 − 𝜏𝜏0 ≪ 1

But, by assumption of small displacement:

B 𝜏𝜏 𝑥𝑥 − 𝜏𝜏0 ≤
𝐵𝐵|𝑥𝑥|
𝑐𝑐

=
𝐵𝐵|𝑥𝑥|
𝜆𝜆𝑓𝑓𝑐𝑐

≪ 1

Hence, 𝑟𝑟 𝑥𝑥, 𝑡𝑡 ≈ 𝑔𝑔0𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆𝑠𝑠 𝑡𝑡 − 𝜏𝜏0

𝜃𝜃

RX position

0 𝑥𝑥



Response for a ULA
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Uniform Linear array (ULA)
◦ 𝑀𝑀 antenna positions spaced 𝑑𝑑 apart

Transmit signal 𝑠𝑠(𝑡𝑡)
◦ Channel single path with AoA 𝜃𝜃, complex gain 𝑔𝑔

Response at position:  𝑟𝑟𝑚𝑚 𝑡𝑡 = 𝑔𝑔0𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑛𝑛−1 𝑑𝑑 sin 𝜃𝜃 𝜆𝜆𝑠𝑠(𝑡𝑡 − 𝜏𝜏0)

In vector notation, we can write  𝒓𝒓(𝑡𝑡) = 𝒉𝒉𝑠𝑠(𝑡𝑡 − 𝜏𝜏0)
◦ 𝒉𝒉 is the channel vector

𝒉𝒉 = 𝑔𝑔
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄0𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

⋮
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑀𝑀−1 𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

= 𝑔𝑔𝒖𝒖 𝜃𝜃



Response Decomposition
For a single path channel, the channel vector has two components:

𝑟𝑟 𝑡𝑡 = 𝒉𝒉 𝜃𝜃 𝑠𝑠 𝑡𝑡 − 𝜏𝜏0 , 𝒉𝒉 𝜃𝜃 = 𝑔𝑔𝒖𝒖 𝜃𝜃

Scalar channel gain, 𝑔𝑔
◦ Complex channel gain at a reference position in the array

Vector spatial signature, 𝒖𝒖 𝜃𝜃

◦ 𝒖𝒖 𝜃𝜃 =
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄0𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

⋮
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑀𝑀−1 𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

◦ Vector of phase shifts from the reference
◦ Also called the steering vector (reason for name will be clear later)
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Array Response in 3D
Many arrays place elements over 2D area

Uniform rectangular array (URA):
◦ 𝑀𝑀 × 𝑁𝑁 grid of elements
◦ Spaced 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦
◦ Also called uniform planar array (UPA)

Incident angle Ω = (𝜙𝜙,𝜃𝜃)
◦ (Azimuth, elevation) or (azimuth, inclination)

Spatial signature:
◦ 𝑢𝑢𝑚𝑚𝑛𝑛 Ω = complex response to antenna (𝑚𝑚,𝑛𝑛)

◦ 𝑢𝑢𝑚𝑚𝑛𝑛 Ω = exp 2𝜋𝜋𝜋𝜋
𝜆𝜆

(𝑚𝑚𝑑𝑑𝑥𝑥 sin𝜃𝜃 cos𝜙𝜙 + 𝑛𝑛𝑑𝑑𝑦𝑦 sin𝜃𝜃 sin𝜙𝜙)
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Mutual Coupling
The above formulas assume there is no mutual coupling

Mutual coupling:
◦ Signals on one antenna scatter to another antenna
◦ Changes the antenna response

Mutual coupling effect is typically large when:
◦ Antennas are close
◦ Or arrays are combined with highly directive elements

We will show how to account for mutual coupling at the end of unit
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Wang, Zhengzheng. “Complete tool for 
predicting the mutual coupling in non-uniform 
arrays of rectangular aperture radiators.” (2017).



MATLAB Phased Array Toolbox
Powerful toolbox

Routines for:
◦ Defining and visualizing arrays 
◦ Computing beam patterns
◦ Beamforming
◦ MIMO
◦ Radar 
◦ …
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Example:  Defining a ULA
Define and view the array

Can display array:
◦ Using viewArray command
◦ Or, manually

12



Computing the Spatial Signature
Compute the spatial signature with the SteeringVector object
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Example:  Defining a URA
Define and view the array

Use the phased.URA class

Can compute steering vector similarly
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A 4 x 8 URA with normal axis aligned on x



Multiple Antennas in Commercial Systems
Sub 6 GHz systems:  Mostly 1 to 4 antennas on base stations or smart phones

Form factor restricts larger number of antennas
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WiFi Router
Linksys AC2200 with 4TX/RX 2x2 LTE base station antenna

Cros-polarization 
16 dBi element gain, 90 deg sector
750x120x60mm

K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S. 
He, "Body-Insensitive Multimode MIMO 
Terminal Antenna of Double-Ring Structure," 
in IEEE Transactions on Antennas and 
Propagation, vol. 63, no. 5, pp. 1925-1936, May 
2015.



Massive MIMO
Massive MIMO:
◦ Many base station antennas
◦ 64 to 128 in many systems today

Significant capacity increase
◦ Typically 8x by most estimates

Use SDMA
◦ Will discuss this later
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Beamforming and MmWave
To compensate for high isotropic path loss, mmWave systems need large number of antennas

5G handsets:  Multiple arrays with 4 to 8 antennas each

5G base stations:  64 to 256 elements
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IBM 28 GHz array
32 element dual 
polarized array
Sadhu et al, ISSCC 2017

Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user 
equipment." 2018 IEEE 5G World Forum (5GWF). IEEE, 2018.
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RX Beamforming
Consider a general channel: 𝒓𝒓 = 𝒉𝒉𝑥𝑥 + 𝒏𝒏
◦ 1 input, M outputs

Beamforming:  Take a linear combination of signals
◦ 𝑧𝑧 = 𝒘𝒘𝑇𝑇𝒓𝒓 = ∑𝜋𝜋𝑤𝑤𝜋𝜋𝑟𝑟𝜋𝜋
◦ 𝒘𝒘 is called beamforming vector for multiple antennas

Creates effective SISO channel:

𝑧𝑧 = 𝒘𝒘𝑇𝑇𝒓𝒓 = 𝒘𝒘𝑇𝑇𝒉𝒉 𝑥𝑥 + 𝒘𝒘𝑇𝑇𝒏𝒏 = 𝛼𝛼𝑥𝑥 + 𝑣𝑣

◦ 1 input 𝑥𝑥, 1 output symbol 𝑧𝑧
◦ Gain:  𝛼𝛼 = 𝒘𝒘𝑇𝑇𝒉𝒉
◦ Noise:  𝑣𝑣 = 𝒘𝒘𝑇𝑇𝒏𝒏

19

X

𝑤𝑤1

𝑟𝑟1

X

𝑤𝑤𝑁𝑁

𝑟𝑟𝑁𝑁

+ 𝑧𝑧

⋮



Conjugate Transpose Conventions
For beamforming, we will use the following conventions

Complex conjugate of a complex scalar 𝑧𝑧 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 is denoted  ̅𝑧𝑧 = 𝑎𝑎 − 𝑏𝑏𝑏𝑏

Unless otherwise specified, vectors are column vectors: 𝒙𝒙 =
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛

Transpose: 𝒙𝒙𝑇𝑇 = 𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛

Conjugate transpose:  𝒙𝒙∗ = 𝑥𝑥1∗ ⋯ 𝑥𝑥𝑛𝑛∗

Elementwise conjugate:  �𝒙𝒙 =
�̅�𝑥1
⋮
�̅�𝑥𝑛𝑛

◦ Takes conjugate of each element but keeps 𝒙𝒙 a column vector
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Beamforming Analysis
Linear combining:   𝑧𝑧 = 𝒘𝒘𝑇𝑇𝒓𝒓 = (𝒘𝒘𝑇𝑇𝒉𝒉)𝑥𝑥 + 𝒘𝒘𝑇𝑇𝒏𝒏
◦ Gain:  𝛼𝛼 = 𝒘𝒘𝑇𝑇𝒉𝒉
◦ Noise:  𝑣𝑣 = 𝒘𝒘𝑇𝑇𝒏𝒏

Analysis:  Let
◦ 𝐸𝐸𝑥𝑥 = 𝐸𝐸 𝑥𝑥 2 = average symbol energy
◦ Assume noise 𝑛𝑛𝑚𝑚~𝐶𝐶𝑁𝑁(0,𝑁𝑁0) (i.i.d. complex Gaussian noise)

Then, after combining;
◦ Signal energy = 𝒘𝒘𝑇𝑇𝒉𝒉 2𝐸𝐸𝑥𝑥
◦ Noise:  𝑣𝑣 is Gaussian with 𝐸𝐸 𝑣𝑣 2 = 𝒘𝒘 2𝑁𝑁0
◦ SNR is:

𝛾𝛾 =
𝒘𝒘𝑇𝑇𝒉𝒉 2𝐸𝐸𝑥𝑥
𝒘𝒘 2𝑁𝑁0
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From previous slide:   SNR is 𝛾𝛾 = 𝒘𝒘𝑇𝑇𝒉𝒉
2
𝐸𝐸𝑥𝑥

𝒘𝒘 2𝑁𝑁0

Maximum ratio combining:  Select BF vector to maximize SNR: �𝒘𝒘 = arg max
𝒘𝒘

𝒘𝒘𝑇𝑇𝒉𝒉
2
𝐸𝐸𝑥𝑥

𝒘𝒘 2𝑁𝑁0

Theorem:  The MRC weighting vector and maximum SNR is:  

�𝒘𝒘 = 𝑐𝑐�𝒉𝒉 ⇒ 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒉𝒉 2 𝐸𝐸𝑥𝑥
𝑁𝑁0

◦ Any constant 𝑐𝑐 ≠ 0 can be used.  Constant does not matter
◦ Align BF vector with the conjugate of the channel

Also called conjugate beamforming

Maximum Ratio Combining
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𝜃𝜃

𝒘𝒘

�𝒉𝒉



Proof of the MRC Solution
We want to maximize �𝒘𝒘 = arg max

𝒘𝒘

𝒘𝒘𝑇𝑇𝒉𝒉
2
𝐸𝐸𝑥𝑥

𝒘𝒘 2𝑁𝑁0

Write the inner product as:
�𝒉𝒉∗𝒘𝒘 = �𝑤𝑤𝜋𝜋�ℎ𝜋𝜋 = �𝑤𝑤𝜋𝜋ℎ𝜋𝜋 = 𝒘𝒘𝑇𝑇𝒉𝒉

Hence, we want to maximize �𝒘𝒘 = arg max
𝒘𝒘

�𝒉𝒉∗𝒘𝒘 2𝐸𝐸𝑥𝑥
𝒘𝒘 2𝑁𝑁0

From Cauchy-Schwartz:   �𝒉𝒉∗𝒘𝒘 2 = 𝒘𝒘 2 �𝒉𝒉 2 cos 𝜃𝜃
◦ Hence, 𝛾𝛾 = �𝒉𝒉 2 𝐸𝐸𝑥𝑥

𝑁𝑁0
cos𝜃𝜃 = 𝒉𝒉 2 𝐸𝐸𝑥𝑥

𝑁𝑁0
cos𝜃𝜃

◦ Maximized with cos𝜃𝜃 = 1 ⇒ 𝜃𝜃 = 0

So, we take 𝒘𝒘 = 𝑐𝑐�𝒉𝒉
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𝜃𝜃

𝒘𝒘

�𝒉𝒉

Double conjugate



MRC Gain
SNR with MRC:   𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒉𝒉 2 𝐸𝐸𝑥𝑥

𝑁𝑁0

SNR on channel 𝑏𝑏 is:  𝛾𝛾𝜋𝜋 = ℎ𝑖𝑖 2𝐸𝐸𝑥𝑥
𝑁𝑁0

Average SNR is: 𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑀𝑀
∑𝜋𝜋=1𝑀𝑀 𝛾𝛾𝜋𝜋 = 1

𝑀𝑀
∑𝜋𝜋=1𝑀𝑀 ℎ𝜋𝜋 2

𝐸𝐸𝑥𝑥
𝑁𝑁0

= 1
𝑀𝑀

𝒉𝒉 2 𝐸𝐸𝑥𝑥
𝑁𝑁0

MRC increases SNR by a factor of 𝑀𝑀 relative to average per channel SNR

Beamforming gain = 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀
𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑀𝑀

Example:  Suppose average SNR per antenna is 10 dB.
◦ With 𝑀𝑀 = 16 antennas and MRC, SNR = 10 + 10 log10(16) = 10 + 4 3 = 22 dB
◦ Gain increases significantly!

Note:  The gain assumes no mutual coupling.  
◦ Once antennas are close, the gain will no longer increase by 𝑀𝑀
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Single Path Channel Case
Consider special case of single path channel:  𝒓𝒓 = 𝑔𝑔0𝒖𝒖 Ω 𝑥𝑥 + 𝒏𝒏
◦ Channel is 𝒉𝒉 = 𝑔𝑔0𝒖𝒖 Ω

SNR per antenna (before beamforming):
◦ 𝛾𝛾0 = 𝐸𝐸𝑥𝑥 𝑎𝑎0 2

𝑁𝑁0
𝑢𝑢𝑚𝑚(Ω) 2 = 𝐸𝐸𝑥𝑥 𝑎𝑎0 2

𝑁𝑁0
◦ Assume 𝑢𝑢𝑚𝑚(Ω) includes only phase shifts

SNR after BF:  𝛾𝛾 = 𝒘𝒘𝑇𝑇𝒖𝒖 Ω
2

𝒘𝒘 2 𝛾𝛾0

MRC beamforming: �𝒘𝒘 = 𝑐𝑐�𝒖𝒖 Ω and 𝛾𝛾 = 𝒖𝒖 Ω 2𝛾𝛾0 = 𝑀𝑀𝛾𝛾0
Conclusions:
◦ Optimal (MRC) beamforming vector is aligned to the conjugate of the spatial signature
◦ Optimal SNR gain = 𝑀𝑀 (assuming no mutual coupling)
◦ Linear gain with number of antennas
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Example Problem
Consider a system
◦ TX power = 23 dBm with antenna directivity = 10 dBi
◦ Free space path loss 𝑑𝑑 = 1000 m
◦ Sample rate = 400 Msym/s
◦ Noise energy = -170 dBm/Hz (including NF)
◦ RX antenna directivity = 5 dBi and 8 elements

Find SNR per antenna and SNR with MRC

Solution:  We get a 9 dB gain!
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In-Class Problem:  Simple QPSK simulation
Simulate QPSK transmission over a single path channel

27



Outline

28

Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling



Array Factor
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Suppose RX aligns antenna for AoA Ω0 = (𝜃𝜃0,𝜙𝜙0)
But signal arrives from AoA Ω = (𝜃𝜃,𝜙𝜙)
Define the (complex) array factor

𝐴𝐴𝐴𝐴 Ω,Ω0 = �𝒘𝒘𝑇𝑇 Ω0 𝒖𝒖 Ω =
1
𝑀𝑀
𝒖𝒖∗ Ω0 𝒖𝒖 Ω

◦ Assume �𝑤𝑤 = 1
◦ Indicates directional gain as a function of AoA 𝜃𝜃
◦ Dependence on 𝜃𝜃0 often omitted

SNR gain = 𝐴𝐴𝐴𝐴 Ω,Ω0 2

◦ Max value = 𝑀𝑀
◦ Usually measured in dBi (dB relative to isotropic)
◦ Also called the array response

Ω

Actual arrival

Ω0
BF direction

Array



Uniform Linear Array 
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Spatial signature (for azimuth angle 𝜙𝜙):
◦ 𝒖𝒖 𝜙𝜙 = 1, 𝑒𝑒𝜋𝜋𝑗𝑗 , … , 𝑒𝑒𝜋𝜋 𝑀𝑀−1 𝑗𝑗 𝑇𝑇

, 𝛽𝛽 = 2𝜋𝜋𝑑𝑑 cos 𝜙𝜙
𝜆𝜆

◦ Note change from sin𝜃𝜃 to cos𝜙𝜙.   (Array aligned on y-axis)

Optimal BF vector for AoA 𝜙𝜙0
◦ �𝒘𝒘 𝜙𝜙0 = 1

𝑀𝑀
�𝒖𝒖 𝜙𝜙0 (Note normalization)

Array factor:  

𝐴𝐴𝐴𝐴 𝜙𝜙,𝜙𝜙0 =
1
𝑀𝑀
𝒖𝒖∗ 𝜙𝜙0 𝒖𝒖 𝜙𝜙 =

𝑒𝑒𝜋𝜋 𝑀𝑀−1 ⁄𝛾𝛾 2

𝑀𝑀
sin( ⁄𝑀𝑀𝛾𝛾 2)

sin( ⁄𝛾𝛾 2)
,

◦ 𝛾𝛾 = 2𝜋𝜋𝑑𝑑
𝜆𝜆

(cos𝜙𝜙 − cos𝜙𝜙0),  

Antenna gain:  𝐴𝐴𝐴𝐴 2 = sin2( ⁄𝑀𝑀𝛾𝛾 2)
𝑀𝑀 sin2( ⁄𝛾𝛾 2)

𝜙𝜙

Arrival

𝑥𝑥

𝑦𝑦

𝜙𝜙0
BF direction



Antenna Gain for ULA
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Maximum gain of   

Note:
◦ Endfire vs. broadside
◦ Beamwidth ∝ ⁄1 𝑀𝑀

𝑑𝑑 = ⁄𝜆𝜆 2 , 𝑀𝑀 = 8
Broadside:  𝜃𝜃0 = 0 Endfire:  𝜃𝜃0 = 90



Plotting the Array Factor
Create a SteeringVector object

Get steering vectors

Compute inner products 
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Polar Plot

33

Useful to visualize in polar plot

Note key features:
◦ Direction of maximum gain
◦ Sidelobes
◦ Pattern repeated on reverse side



Key Statistics
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From Jacobs University slides

Values in () for: 𝑑𝑑 = ⁄𝜆𝜆 2 , 𝑀𝑀 = 8

Full null beamwidth
(zero to zero)

Half power beamwidth
(-3dB to -3dB)

First sidelobe level



Grating Lobes
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When 𝑑𝑑 > 𝜆𝜆
2

Obtain multiple peaks

Does not direct gain in one direction



Plotting the Patterns 
MATLAB has excellent routines for 3D patterns

Note that this plots directivity not array factor
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Outline
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Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling



Multiple TX antennas
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MISO channel
◦ Multiple input single output
◦ 𝑀𝑀 TX antennas, 1 RX antennas

◦ Transmit vector:  𝒙𝒙 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡 , … , 𝑥𝑥𝑀𝑀 𝑡𝑡 𝑇𝑇

◦ Scalar RX:  𝑟𝑟(𝑡𝑡)

Most of the theory is identical to the SIMO channel



Single Path Channel
First consider single path channel

Similar to the SIMO case, RX signal is:

𝑟𝑟 𝑡𝑡 = 𝑔𝑔0𝐴𝐴(Ω)𝒖𝒖𝑇𝑇 Ω 𝒙𝒙(𝑡𝑡 − 𝜏𝜏)
◦ 𝑔𝑔0 path gain 
◦ Ω = angle of departure
◦ 𝜏𝜏 = path delay
◦ 𝒖𝒖 Ω TX spatial signature
◦ 𝐴𝐴(Ω):  complex TX element gain

TX and RX spatial signatures are identical
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Ω

TX array RX with single
antenna



TX Beamforming
RX signal is:  𝑟𝑟 𝑡𝑡 = 𝑔𝑔0𝒖𝒖𝑇𝑇 Ω 𝒙𝒙 𝑡𝑡 − 𝜏𝜏 + 𝑛𝑛(𝑡𝑡)

TX beamforming
◦ Input scalar information signal 𝑠𝑠 𝑡𝑡
◦ Create vector signal to antennas:  𝒙𝒙 𝑡𝑡 = 𝒘𝒘 𝑠𝑠 𝑡𝑡

Signal to antenna 𝑏𝑏 is:  𝑥𝑥𝜋𝜋 𝑡𝑡 = 𝑤𝑤𝜋𝜋𝑠𝑠(𝑡𝑡)
◦ 𝑤𝑤𝜋𝜋 is a complex weight applied to signal

𝒘𝒘 is called the TX beamforming vector
◦ Also called pre-coding
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Ω
TX array

RX

𝒙𝒙(𝑡𝑡)
𝑁𝑁 signals

𝑠𝑠 𝑡𝑡
Scalar

𝒘𝒘
TX BF vector



SNR with TX Beamforming
RX signal is:  𝑟𝑟 = 𝑔𝑔0𝒖𝒖𝑇𝑇 Ω 𝒙𝒙 + 𝑛𝑛
◦ Drop dependence on time to simplify notation

With  𝒙𝒙 = 𝒘𝒘𝑠𝑠 SISO channel is 𝑟𝑟 = 𝑔𝑔0𝒖𝒖𝑇𝑇 Ω 𝒘𝒘𝑠𝑠 + 𝑛𝑛

Total transmitted energy across all 𝑁𝑁 TX chains is:
◦ 𝐸𝐸𝑥𝑥 = ∑ 𝑤𝑤𝜋𝜋

2𝐸𝐸𝑠𝑠 = 𝒘𝒘 2𝐸𝐸𝑆𝑆
◦ To keep constant total energy: 𝒘𝒘 2 = 1
◦ Assumes no mutual coupling

SNR is 𝛾𝛾 = 𝑎𝑎0 2

𝑁𝑁0
𝐸𝐸𝑠𝑠 𝒖𝒖𝑇𝑇 Ω 𝒘𝒘 2 = 𝛾𝛾0 𝒖𝒖𝑇𝑇 Ω 𝒘𝒘 2

◦ 𝛾𝛾0 = 𝑎𝑎0 2

𝑁𝑁0
𝐸𝐸𝑠𝑠 is the SNR for a single antenna
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Ω
TX array

RX

𝒙𝒙(𝑡𝑡)
𝑁𝑁 signals

𝑠𝑠 𝑡𝑡
Scalar

𝒘𝒘
TX BF vector



MRC TX Beamforming
From previous slide, SNR is: 𝛾𝛾 = 𝛾𝛾0 𝒖𝒖∗ Ω 𝒘𝒘 𝟐𝟐

To maximize SNR s.t. power constraint

�𝒘𝒘 = arg max 𝒖𝒖𝑇𝑇 Ω 𝒘𝒘 𝟐𝟐 s. t. 𝒘𝒘 2 = 1

MRC TX BF vector: �𝒘𝒘 = 1
𝑁𝑁
�𝒖𝒖 Ω

◦ Align with the conjugate of the spatial signature 
◦ SNR gain = 𝒖𝒖𝑇𝑇 Ω �𝒘𝒘 𝟐𝟐 = 𝑁𝑁

Define and compute Array Factor similarly
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Ω
TX array

RX

𝒙𝒙(𝑡𝑡)
𝑁𝑁 signals

𝑠𝑠 𝑡𝑡
Scalar

𝒘𝒘
TX BF vector



Outline
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Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling



MIMO Channel with a Single Path
Multi-input Multi-Output (MIMO) channel:
◦ TX array with 𝑁𝑁𝑡𝑡 elements
◦ RX array with 𝑁𝑁𝑟𝑟 elements

Single path channel:

𝒓𝒓 𝑡𝑡 = 𝑔𝑔0𝒖𝒖𝑟𝑟𝑥𝑥 Ω𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥𝑇𝑇 Ω𝑡𝑡𝑥𝑥 𝒙𝒙 𝑡𝑡 − 𝜏𝜏 = 𝑯𝑯𝒙𝒙(𝑡𝑡 − 𝜏𝜏)

MIMO channel matrix for a single path channel:

𝑯𝑯 = 𝑔𝑔0𝒖𝒖𝑟𝑟𝑥𝑥 Ω𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥𝑇𝑇 Ω𝑡𝑡𝑥𝑥
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Ω𝑡𝑡𝑥𝑥

TX array

RX array

Ω𝑟𝑟𝑥𝑥



Beamforming on a MIMO Channel
Consider MIMO channel,  𝒓𝒓 = 𝑯𝑯𝒙𝒙 + 𝒗𝒗,  𝑯𝑯 ∈ ℂ𝑀𝑀×𝑁𝑁, 𝒗𝒗~𝐶𝐶𝑁𝑁(𝟎𝟎,𝑁𝑁0𝑰𝑰)
◦ Channel on time and frequency resource

Apply TX beamforming: 𝒙𝒙 = 𝒘𝒘𝑡𝑡𝑥𝑥𝑠𝑠
◦ Assume 𝒘𝒘𝑡𝑡𝑥𝑥 = 1 so total transmit energy is 𝐸𝐸𝑠𝑠 = 𝐸𝐸 𝑠𝑠 2

Apply RX beamforming:  𝑧𝑧 = 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒓𝒓

◦ Assume 𝒘𝒘𝑟𝑟𝑥𝑥 = 1 so total received noise energy 𝐸𝐸 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒗𝒗 2 = N0

Equivalent channel:   𝑧𝑧 = 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒓𝒓 = 𝐺𝐺𝑠𝑠 + 𝑑𝑑,

◦ 𝐺𝐺 = 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥 = complex beamformed channel gain 

◦ Noise energy is 𝐸𝐸 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒗𝒗 2 = N0

SNR with beamforming:  𝛾𝛾 = 𝐺𝐺 2𝐸𝐸𝑠𝑠
N0

= 𝒘𝒘𝑟𝑟𝑥𝑥𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥
2
𝐸𝐸𝑠𝑠

N0
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Beamforming Gain with a Single Path
From previous slide, we saw SNR on a MIMO channel is: 𝛾𝛾 = 𝐺𝐺 2𝐸𝐸𝑠𝑠

N0
= 𝒘𝒘𝑟𝑟𝑥𝑥𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥

2
𝐸𝐸𝑠𝑠

N0
Suppose we have a single path channel: 𝑯𝑯 = 𝑔𝑔0𝒖𝒖𝑟𝑟𝑥𝑥 Ω𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥𝑇𝑇 Ω𝑡𝑡𝑥𝑥

Take TX and RX conjugate beamforming vectors:
◦ 𝒘𝒘𝑟𝑟𝑥𝑥 = �𝒖𝒖𝑟𝑟𝑥𝑥 Ω𝑟𝑟𝑥𝑥

𝑁𝑁𝑟𝑟
,𝒘𝒘𝑡𝑡𝑥𝑥 = �𝒖𝒖𝑡𝑡𝑥𝑥 Ω𝑡𝑡𝑥𝑥

𝑁𝑁𝑡𝑡

Then SNR is 𝛾𝛾 = 𝑎𝑎0 2𝐸𝐸𝑠𝑠
N0

|𝑢𝑢𝑟𝑟𝑥𝑥∗ Ω𝑟𝑟𝑥𝑥 𝑢𝑢𝑟𝑟𝑥𝑥 Ω𝑟𝑟𝑥𝑥 |2

𝑁𝑁𝑟𝑟

|𝑢𝑢𝑡𝑡𝑥𝑥
∗ Ω𝑡𝑡𝑥𝑥 𝑢𝑢𝑡𝑡𝑥𝑥 Ω𝑡𝑡𝑥𝑥 |2

𝑁𝑁𝑡𝑡
= 𝑎𝑎0 2𝐸𝐸𝑠𝑠

N0
𝑁𝑁𝑟𝑟𝑁𝑁𝑡𝑡

But 𝑎𝑎0
2𝐸𝐸𝑠𝑠

N0
is the SNR per antenna

Conclusion:   Maximum BF gain on a single path channel is 𝑁𝑁𝑟𝑟𝑁𝑁𝑡𝑡

◦ Again, assuming no mutual coupling
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Friis’ Law and MmWave
Recall Friis’ Law: 𝑃𝑃𝑟𝑟

𝑃𝑃𝑡𝑡
= 𝐷𝐷𝑟𝑟𝐷𝐷𝑡𝑡

𝜆𝜆
4𝜋𝜋𝑀𝑀

2

Isotropic path loss decreases with 𝜆𝜆2

Millimeter Wave systems:  Increases 𝑓𝑓𝑐𝑐2
◦ Decreases 𝜆𝜆2 ⇒ Increase path loss

But, with beamforming:
◦ Directivity 𝐷𝐷𝑟𝑟 ∝ 𝑁𝑁𝑟𝑟 and 𝐷𝐷𝑡𝑡 ∝ 𝑁𝑁𝑡𝑡
◦ Each antenna takes area ∝ 𝜆𝜆2

◦ So, for fixed total aperture:  

𝐷𝐷𝑟𝑟 ∝ 𝑁𝑁𝑟𝑟 ∝
1
𝜆𝜆2

,𝐷𝐷𝑡𝑡 ∝ 𝑁𝑁𝑡𝑡 ∝
1
𝜆𝜆2

Can compensate isotropic path loss with directivity
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Friis’ Law and MmWave

Friis’ Law: 𝑃𝑃𝑟𝑟
𝑃𝑃𝑡𝑡

= 𝐷𝐷1𝐷𝐷2
𝜆𝜆

4𝜋𝜋𝑀𝑀

2

Conclusions:  With a fixed aperture and beamforming
◦ Isotropic path loss can be overcome 

But systems need very directive beams
◦ Raises many other issues.  E.g.  Channel tracking, processing, …

48

Condition Directivity scaling Path loss scaling

No beamforming 𝐷𝐷𝜋𝜋 constant 𝑃𝑃𝑃𝑃 ∝ 𝑓𝑓𝑐𝑐2

Beamforming on one side
(TX or RX)

𝐷𝐷1 ∝ 𝑓𝑓𝑐𝑐2, 𝐷𝐷2 constant 𝑃𝑃𝑃𝑃 constant

Beamforming on both sides
(TX and RX)

𝐷𝐷1,𝐷𝐷2 ∝ 𝑓𝑓𝑐𝑐2 𝑃𝑃𝑃𝑃 ∝ 𝑓𝑓𝑐𝑐−2
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Easy to extend channel response to multiple paths

Each path adds a term with a spatial signature

Time-domain model

𝒓𝒓 𝑡𝑡 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑒𝑒𝜋𝜋𝜔𝜔ℓ𝑡𝑡 𝒖𝒖𝑟𝑟𝑥𝑥 Ωℓ𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥𝑇𝑇 Ωℓ𝑡𝑡𝑥𝑥 𝑥𝑥 𝑡𝑡 − 𝜏𝜏ℓ + 𝒏𝒏(𝑡𝑡)

Complex gain

Doppler shift

AoA Delay

Multiple Paths

AoD
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The channel response can also be described as a time and frequency-varying matrix

𝑯𝑯 𝑡𝑡, 𝑓𝑓 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑒𝑒2𝜋𝜋𝜋𝜋(𝑓𝑓ℓ𝑡𝑡−𝜏𝜏ℓ𝑓𝑓) 𝒖𝒖𝑟𝑟𝑥𝑥 Ωℓ𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥𝑇𝑇 Ωℓ𝑡𝑡𝑥𝑥

◦ At time and frequency 𝑯𝑯 𝑡𝑡, 𝑓𝑓 ∈ ℂ𝑁𝑁𝑟𝑟×𝑁𝑁𝑡𝑡

◦ Varies in time due to Doppler shifts 𝑓𝑓ℓ
◦ Varies in frequency due to delay spread 𝜏𝜏ℓ

Time-Varying Frequency Response



OFDM Time-Frequency Grid
Consider OFDM channel
◦ Sub-carrier spacing 𝐴𝐴𝑠𝑠𝑐𝑐,  symbol time 𝑇𝑇𝑠𝑠𝑦𝑦𝑚𝑚
◦ Index with 𝑘𝑘 = OFDM symbol index, 𝑛𝑛 = subcarrier index

Transmit array:  𝑿𝑿 𝑛𝑛, 𝑘𝑘
◦ At each 𝑘𝑘,𝑛𝑛, we transmit a vector

𝑿𝑿 𝑛𝑛, 𝑘𝑘 = 𝑋𝑋1 𝑛𝑛, 𝑘𝑘 , … ,𝑋𝑋𝑁𝑁 𝑛𝑛, 𝑘𝑘 𝑇𝑇

◦ 𝑁𝑁 =number of TX antennas

Receive array:  𝒀𝒀 𝑛𝑛, 𝑘𝑘 :
𝒀𝒀 𝑛𝑛, 𝑘𝑘 = 𝑌𝑌1 𝑛𝑛, 𝑘𝑘 , … ,𝑌𝑌𝑀𝑀 𝑛𝑛, 𝑘𝑘 𝑇𝑇

◦ 𝑀𝑀 = number of RX antennas
◦ One 𝑀𝑀 dim vector per resource element
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Subcarrier 
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𝐴𝐴𝑠𝑠𝑐𝑐 = 1
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OFDM Channel with Multiple RX Antennas
OFDM channel acts as multiplication:

Under normal operation (delay spread is contained in CP):

𝒀𝒀 𝑘𝑘,𝑛𝑛 = 𝑯𝑯 𝑘𝑘,𝑛𝑛 𝑿𝑿[𝑘𝑘,𝑛𝑛]

OFDM channel gains can be computed from the multi-path components

𝑯𝑯 𝑘𝑘,𝑛𝑛 = �
ℓ=1

𝐿𝐿

𝑔𝑔ℓ𝑒𝑒2𝜋𝜋𝜋𝜋 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑓𝑓ℓ−𝐹𝐹𝑠𝑠𝑠𝑠𝑛𝑛𝜏𝜏ℓ 𝒖𝒖𝑟𝑟𝑥𝑥 Ωℓ𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥∗ (Ωℓ𝑡𝑡𝑥𝑥)

◦ 𝑇𝑇 = OFDM symbol time, 𝑆𝑆 = sub-carrier spacing
◦ For each path:  𝑓𝑓ℓ =Doppler shift, 𝜏𝜏ℓ =Delay, 𝑔𝑔ℓ =complex gain 
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RX symbol vector Channel matrix TX symbol vector



Outline
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Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling



Orthogonal Vectors
Let 𝔽𝔽 = ℝ or ℂ (real or complex)

Vectors 𝒙𝒙,𝒚𝒚 ∈ 𝔽𝔽𝑁𝑁 are orthogonal if 𝒙𝒙,𝒚𝒚 = 𝒙𝒙∗𝒚𝒚 = 0.  
◦ Write 𝒙𝒙 ⊥ 𝒚𝒚
◦ Visually, 𝒙𝒙 ⊥ 𝒚𝒚 if they are at 90 degrees 

A set of vectors 𝒗𝒗1, … ,𝒗𝒗𝐾𝐾 ∈ 𝔽𝔽𝑁𝑁are orthonormal
◦ 𝒗𝒗𝜋𝜋 ⊥ 𝒗𝒗𝜋𝜋 when 𝑏𝑏 ≠ 𝑗𝑗
◦ 𝒗𝒗𝜋𝜋 = 1 for all 𝑏𝑏
◦ Vectors are pairwise orthogonal and unit norm

Orthonormal basis:  An orthonormal set  𝒗𝒗1, … ,𝒗𝒗𝑁𝑁 ∈ 𝔽𝔽𝑁𝑁
◦ Any vector can be written 𝑥𝑥 = ∑𝛼𝛼𝑛𝑛𝒗𝒗𝑛𝑛, 𝛼𝛼𝑛𝑛 = 𝒗𝒗𝑛𝑛∗ 𝒙𝒙
◦ 𝛼𝛼𝑛𝑛 are the coefficients of 𝒙𝒙 in the basis 𝒗𝒗1, … ,𝒗𝒗𝑁𝑁
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Orthogonal and Unitary Matrices
A matrix 𝑈𝑈 ∈ ℂ𝑁𝑁×𝑁𝑁 is unitary if 𝑈𝑈∗𝑈𝑈 = 𝑈𝑈𝑈𝑈∗ = 𝐼𝐼

A matrix 𝑈𝑈 ∈ ℝ𝑁𝑁×𝑁𝑁 is orthogonal if 𝑈𝑈𝑇𝑇𝑈𝑈 = 𝑈𝑈𝑈𝑈𝑇𝑇 = 𝐼𝐼
◦ Orthogonal is just the real-valued version of unitary

Key properties:
◦ 𝑈𝑈 is orthogonal if and only if columns are orthonormal
◦ 𝑈𝑈 is orthogonal if and only if rows are orthonormal
◦ Taking an inverse is easy 𝑈𝑈−1 = 𝑈𝑈∗
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Examples of Orthogonal Matrices
2D rotation matrix by 𝜃𝜃:  𝑽𝑽 = cos 𝜃𝜃 sin𝜃𝜃

− sin𝜃𝜃 cos 𝜃𝜃
◦ Can verify that 𝑽𝑽∗𝑽𝑽 = 𝐼𝐼
◦ 3D rotation matrices are also orthogonal

Example with 3 vectors:

◦ Let 𝒗𝒗1 = 1
11

3
1
1

, 𝒗𝒗2 = 1
6

−1
2
1

, 𝒗𝒗3 = 1
66

−1
−4
7

◦ Can verify that 𝒗𝒗𝜋𝜋∗𝒗𝒗𝜋𝜋 = 𝛿𝛿𝜋𝜋𝜋𝜋

◦ Hence the matrix:  𝑽𝑽 =
3/ 11 −1/ 6 −1/ 66
1/ 11 2/ 6 −4/ 66
1/ 11 1/ 6 7/ 66
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Beamspace Matrices
Consider a ULA with normalized steering vector:  

𝒖𝒖 𝜙𝜙 =
1
𝑁𝑁

1, 𝑒𝑒𝜋𝜋𝑗𝑗 cos 𝜙𝜙, … , 𝑒𝑒𝜋𝜋 𝑁𝑁−1 𝑗𝑗 cos 𝜙𝜙 𝑇𝑇
, 𝛽𝛽 =

2𝜋𝜋𝑑𝑑
𝜆𝜆

Take 𝑁𝑁 angles: 𝛽𝛽 cos𝜙𝜙𝑛𝑛 = 2𝜋𝜋 𝑛𝑛
𝑁𝑁
− 1

2
+ 1

𝑁𝑁
, 𝑛𝑛 = 0,1, … ,𝑁𝑁 − 1

◦ This is possible if 𝑑𝑑 ≥ 𝜆𝜆
2

The vectors 𝒖𝒖 𝜙𝜙𝑛𝑛 ,𝑛𝑛 = 0,1, … ,𝑁𝑁 − 1 are orthonormal

These are called the beamspace vectors
◦ An orthonormal basis for the spatial domain
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Symmetric and Hermitian Matrices
Definition:  
◦ A matrix 𝑨𝑨 ∈ ℝ𝑁𝑁×𝑁𝑁 is symmetric if 𝑨𝑨 = 𝑨𝑨𝑇𝑇

◦ A matrix 𝑨𝑨 ∈ ℂ𝑁𝑁×𝑁𝑁 is Hermitian if 𝑨𝑨 = 𝑨𝑨∗

Symmetric is the real version of Hermitian

For any 𝑨𝑨 symmetric / Hermitian:
◦ There are an orthonormal set of eigenvectors 𝒗𝒗1, . . ,𝒗𝒗𝑁𝑁 with eigenvalues 𝜆𝜆1, … , 𝜆𝜆𝑁𝑁
◦ All eigenvalues are real (not complex)

Let 𝑽𝑽 = 𝒗𝒗1, … ,𝒗𝒗𝑁𝑁 ∈ 𝔽𝔽𝑁𝑁×𝑁𝑁 = Matrix with the eigenvectors as the columns
◦ Then 𝑽𝑽 = 𝑽𝑽∗ is orthogonal / unitary
◦ Hence 𝑨𝑨 = 𝑽𝑽𝑽𝑽𝑽𝑽∗,𝑽𝑽 = 𝑑𝑑𝑏𝑏𝑎𝑎𝑔𝑔(𝜆𝜆1, … , 𝜆𝜆𝑁𝑁) diagonalizable with unitary 
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Sample Problem
Let 𝐴𝐴 = 1 2

2 1 .  Find an orthogonal bases of eigenvectors and their eigenvalues

Solution:  Eigenvalues:
◦ det 𝜆𝜆𝐼𝐼 − 𝐴𝐴 = 𝑑𝑑𝑒𝑒𝑡𝑡 𝜆𝜆 − 1 −2

−2 𝜆𝜆 − 1 = 𝜆𝜆 − 1 2 − 4 = 0

◦ 𝜆𝜆 = 1 ± 2 = −1,3

For 𝜆𝜆 = −1, 𝜆𝜆𝐼𝐼 − 𝐴𝐴 𝑣𝑣 = −2 −2
−2 −2

𝑣𝑣1
𝑣𝑣2 = 0

0 ⇒ 𝑣𝑣1 = −𝑣𝑣2
◦ Take 𝑣𝑣 = 1

2
1,−1 𝑇𝑇

For 𝜆𝜆 = 3, 𝜆𝜆𝐼𝐼 − 𝐴𝐴 𝑣𝑣 = 2 −2
−2 2

𝑣𝑣1
𝑣𝑣2 = 0

0 ⇒ 𝑣𝑣1 = 𝑣𝑣2
◦ Take 𝑣𝑣 = 1

2
1,1 𝑇𝑇
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Positive Definite Matrices
Let 𝑨𝑨 = 𝑨𝑨∗ ∈ 𝔽𝔽𝑁𝑁×𝑁𝑁 be symmetric / Hermitian with eigenvalues 𝜆𝜆1, … , 𝜆𝜆𝑁𝑁
◦ Recall that the eigenvalues are real

Definition:  
◦ 𝐴𝐴 is positive semi-definite if 𝜆𝜆𝜋𝜋 ≥ 0 for all 𝑏𝑏
◦ 𝐴𝐴 is positive definite if 𝜆𝜆𝜋𝜋 > 0 for all 𝑏𝑏

Notation: 𝑨𝑨 > 0 for positive definite and 𝑨𝑨 ≥ 0 when 𝑨𝑨 is positive semi-definite

Key property:  If 𝑨𝑨 = 𝑨𝑨∗ then: 
◦ 𝑨𝑨 ≥ 0 if and only if 𝒙𝒙∗𝑨𝑨𝒙𝒙 ≥ 0 for all 𝒙𝒙
◦ 𝑨𝑨 > 0 if and only if 𝒙𝒙∗𝑨𝑨𝒙𝒙 > 0 for all 𝒙𝒙 ≠ 0
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Matrix Square Roots
Theorem: Let 𝐴𝐴 ∈ 𝔽𝔽𝑁𝑁×𝑁𝑁. Then 𝐴𝐴 ≥ 0 if and only if 𝐴𝐴 = 𝐵𝐵𝐵𝐵∗ for some 𝐵𝐵 ∈ 𝔽𝔽𝑁𝑁×𝑀𝑀

◦ Note:  The dimension 𝑀𝑀 can be anything  (𝑀𝑀 ≥ 𝑁𝑁 or 𝑀𝑀 < 𝑁𝑁)

Proof:
◦ (⇒) Suppose 𝐴𝐴 ≥ 0.  Then 𝐴𝐴 = 𝑈𝑈𝐷𝐷𝑈𝑈∗,𝐷𝐷 = 𝑑𝑑𝑏𝑏𝑎𝑎𝑔𝑔(𝜆𝜆1, … , 𝜆𝜆𝑁𝑁)
◦ Write 𝐵𝐵 = 𝑈𝑈𝐷𝐷 ⁄1 2𝑈𝑈∗. 𝐷𝐷 = 𝑑𝑑𝑏𝑏𝑎𝑎𝑔𝑔(𝜆𝜆1

⁄1 2, … , 𝜆𝜆𝑁𝑁
⁄1 2)

◦ Then:  𝐵𝐵𝐵𝐵∗ = 𝐵𝐵2 = 𝑈𝑈𝐷𝐷 ⁄1 2𝑈𝑈∗ 𝑈𝑈𝐷𝐷 ⁄1 2𝑈𝑈∗ = 𝑈𝑈𝐷𝐷𝑈𝑈∗ = 𝐴𝐴
◦ Since 𝐴𝐴 = 𝐵𝐵2 and 𝐵𝐵 ≥ 0, 𝐵𝐵 is called the matrix square root.  Write 𝐵𝐵 = 𝐴𝐴 ⁄1 2

◦ (⇐) Suppose 𝐴𝐴 = 𝐵𝐵𝐵𝐵∗.  
◦ Then for any 𝑥𝑥, 𝑥𝑥∗𝐴𝐴𝑥𝑥 = 𝑥𝑥∗𝐵𝐵𝐵𝐵∗𝑥𝑥 = 𝐵𝐵∗𝑥𝑥 2 ≥ 0

61

𝑨𝑨 𝑩𝑩
𝑩𝑩∗=



Singular Value Decomposition

Given matrix 𝑨𝑨 ∈ 𝔽𝔽𝑀𝑀×𝑁𝑁, an SVD is a factorization of the form, 𝑨𝑨 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇 where
◦ 𝑼𝑼 ∈ 𝔽𝔽𝑀𝑀×𝑀𝑀, 𝑼𝑼∗𝑼𝑼 = 𝑰𝑰𝑀𝑀, a unitary matrix
◦ 𝑽𝑽 ∈ 𝔽𝔽𝑁𝑁×𝑁𝑁, 𝑽𝑽∗𝑽𝑽 = 𝑰𝑰𝑁𝑁, a unitary matrix

◦ If 𝑀𝑀 ≥ 𝑁𝑁, 𝚺𝚺 =
diag(𝜎𝜎1, … ,𝜎𝜎𝑁𝑁)
𝟎𝟎 𝑀𝑀−𝑁𝑁 ×𝑁𝑁

.   If 𝑁𝑁 ≥ 𝑀𝑀, 𝚺𝚺 = diag(𝜎𝜎1, … ,𝜎𝜎𝑀𝑀) 𝟎𝟎𝑁𝑁×(𝑀𝑀−𝑁𝑁)

Values 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝐿𝐿 ≥ 0, 𝑃𝑃 = 𝑚𝑚𝑏𝑏𝑛𝑛 𝑀𝑀,𝑁𝑁 . Called the singular values
All matrices have an SVD

62

𝑨𝑨 𝑼𝑼
𝑽𝑽∗=

“Tall” 𝑨𝑨,  𝑀𝑀 ≥ 𝑁𝑁

𝚺𝚺
𝑨𝑨 𝑼𝑼

𝑽𝑽∗
=

“Fat” 𝑨𝑨,  𝑀𝑀 ≤ 𝑁𝑁

𝚺𝚺

𝑀𝑀 × 𝑁𝑁 𝑀𝑀 × 𝑀𝑀 𝑀𝑀 × 𝑁𝑁

𝑁𝑁 × 𝑁𝑁

𝑁𝑁 × 𝑁𝑁

𝑀𝑀 × 𝑁𝑁𝑀𝑀 × 𝑀𝑀𝑀𝑀 × 𝑁𝑁



Example
Let 𝐴𝐴 =

Then can check that  𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉∗

◦ Also verify that 𝑈𝑈𝑈𝑈∗ = 𝐼𝐼5 and 𝑉𝑉𝑉𝑉∗ = 𝐼𝐼5
◦ This can be found by (cleverly) permute the rows of 𝐴𝐴
◦ But, in general, use a computer to compute SVD
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Geometric Interpretation
Let 𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉∗ and 𝑦𝑦 = 𝐴𝐴𝑥𝑥

Consider a transformed space
◦ 𝒘𝒘 = 𝑽𝑽∗𝒙𝒙 so 𝒘𝒘 = [𝑤𝑤1, … ,𝑤𝑤𝑁𝑁] are the coefficients of the input in the basis 𝑉𝑉 = [𝑣𝑣1, … , 𝑣𝑣𝑁𝑁]
◦ 𝒛𝒛 = 𝑼𝑼∗𝒚𝒚 so 𝒛𝒛 = [𝑧𝑧1, … , 𝑧𝑧𝑀𝑀] are the coefficients in the basis 𝑈𝑈 = [𝑢𝑢1, … ,𝑢𝑢𝑀𝑀]

Then:  𝒛𝒛 = 𝚺𝚺𝒘𝒘 so  𝑧𝑧𝜋𝜋 = 𝜎𝜎𝜋𝜋𝑤𝑤𝜋𝜋
Each input direction 𝒗𝒗𝜋𝜋 is mapped to 𝜎𝜎𝜋𝜋𝒖𝒖𝜋𝜋
Consequence:  
◦ SVD finds orthonormal bases 𝑈𝑈,𝑉𝑉 such that

matrix 𝐴𝐴 is a linear scaling in each basis vector
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SVD and Rank
Theorem:  Suppose 𝑨𝑨 = 𝑼𝑼𝚺𝚺𝑽𝑽∗ ∈ 𝔽𝔽𝑀𝑀×𝑁𝑁, then

𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘 𝑨𝑨 = 𝜎𝜎ℓ > 0 = num of positive singular values

Ex:  Suppose 𝑨𝑨 ∈ ℂ5×3 with 𝜎𝜎 = {10,2,0}
◦ Then: 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘 𝑨𝑨 = 2

Proof:  
◦ For any 𝒙𝒙, the output is 𝒚𝒚 = 𝑨𝑨𝒙𝒙 = 𝑼𝑼𝚺𝚺𝑽𝑽∗𝒙𝒙
◦ Define 𝒛𝒛 = 𝑼𝑼∗𝒚𝒚 and 𝒘𝒘 = 𝑽𝑽∗𝒙𝒙
◦ Then 𝑧𝑧ℓ = 𝜎𝜎ℓ𝑤𝑤ℓ
◦ If 𝑟𝑟 = 𝜎𝜎ℓ > 0 , then 𝜎𝜎ℓ > 0 for ℓ = 1, … , 𝑟𝑟
◦ Hence, by varying 𝑤𝑤ℓ, we can span a space of dimension 𝑟𝑟
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Sum of Rank One Form
Suppose 𝑨𝑨 = 𝑼𝑼𝚺𝚺𝑽𝑽∗ ∈ 𝔽𝔽𝑀𝑀×𝑁𝑁 with 𝑟𝑟 = 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘(𝑨𝑨)

Then:

𝑨𝑨 = �
ℓ=1

𝑟𝑟

𝜎𝜎ℓ𝒖𝒖ℓ𝒗𝒗ℓ∗

◦ A sum of rank one terms 𝒖𝒖ℓ𝒗𝒗ℓ∗

The vectors 𝒖𝒖ℓ, ℓ = 1, … , 𝑟𝑟 are an orthonormal  basis for 𝑅𝑅𝑎𝑎𝑛𝑛𝑔𝑔𝑒𝑒(𝑨𝑨)

The vectors 𝒗𝒗ℓ, ℓ = 1, … , 𝑟𝑟 are an orthonormal basis for 𝑅𝑅𝑎𝑎𝑛𝑛𝑔𝑔𝑒𝑒(𝑨𝑨∗)
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𝑨𝑨 𝑼𝑼
𝑽𝑽∗= 𝚺𝚺
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Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling



SVD of the Channel Matrix
Consider a MIMO channel matrix:  𝑯𝑯 = ∑ℓ=1𝐿𝐿 𝐸𝐸ℓ𝑒𝑒𝜃𝜃ℓ 𝒖𝒖𝑟𝑟𝑥𝑥 Ωℓ𝑟𝑟𝑥𝑥 𝒖𝒖𝑡𝑡𝑥𝑥𝑇𝑇 Ωℓ𝑡𝑡𝑥𝑥

◦ 𝐸𝐸ℓ = RX energy per antenna on path ℓ
◦ 𝜃𝜃ℓ = phase that varies with frequency and time

We can write this as:    𝑯𝑯 = ∑ℓ=1𝐿𝐿 𝜎𝜎ℓ �𝒖𝒖ℓ�𝒗𝒗ℓ∗ where
◦ �𝒖𝒖ℓ = 1

𝑁𝑁𝑟𝑟𝑥𝑥
𝑒𝑒𝜃𝜃ℓ𝒖𝒖𝑟𝑟𝑥𝑥 Ωℓ𝑟𝑟𝑥𝑥 and �𝒗𝒗ℓ = 1

𝑁𝑁𝑡𝑡𝑥𝑥
�𝒖𝒖𝑡𝑡𝑥𝑥 Ωℓ𝑡𝑡𝑥𝑥 = normalized steering vectors

◦ 𝜎𝜎ℓ = 𝐸𝐸ℓ𝑁𝑁𝑟𝑟𝑥𝑥𝑁𝑁𝑡𝑡𝑥𝑥

Interpretation:
◦ 𝑃𝑃 =number of paths = rank of 𝐻𝐻
◦ If the signatures �𝒖𝒖ℓ and  �𝒗𝒗ℓ are orthogonal then  they are the left and right singular vectors
◦ In this case, singular values squared  𝜎𝜎ℓ2 = 𝐸𝐸ℓ𝑁𝑁𝑟𝑟𝑥𝑥𝑁𝑁𝑡𝑡𝑥𝑥 = RX energy × beamforming gain
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Beamforming on a MIMO Channel
Consider MIMO channel,  𝒓𝒓 = 𝑯𝑯𝒙𝒙 + 𝒗𝒗,  𝑯𝑯 ∈ ℂ𝑀𝑀×𝑁𝑁, 𝒗𝒗~𝐶𝐶𝑁𝑁(𝟎𝟎,𝑁𝑁0𝑰𝑰)
◦ Channel on time and frequency resource

Apply TX beamforming: 𝒙𝒙 = 𝒘𝒘𝑡𝑡𝑥𝑥𝑠𝑠
◦ Assume 𝒘𝒘𝑡𝑡𝑥𝑥 = 1 so total transmit energy is 𝐸𝐸𝑠𝑠 = 𝐸𝐸 𝑠𝑠 2

Apply RX beamforming:  𝑧𝑧 = 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒓𝒓

◦ Assume 𝒘𝒘𝑟𝑟𝑥𝑥 = 1 so total received noise energy 𝐸𝐸 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒗𝒗 2 = N0

Equivalent channel:   𝑧𝑧 = 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒓𝒓 = 𝐺𝐺𝑠𝑠 + 𝑑𝑑,

◦ 𝐺𝐺 = 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥 = complex beamformed channel gain 

◦ Noise energy is 𝐸𝐸 𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝒗𝒗 2 = N0

SNR with beamforming:  𝛾𝛾 = 𝐺𝐺 2𝐸𝐸𝑠𝑠
N0

= 𝒘𝒘𝑟𝑟𝑥𝑥𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥
2
𝐸𝐸𝑠𝑠

N0
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Maximizing the SNR
From previous slide, MIMO channel with beamforming is 𝑧𝑧 = 𝐺𝐺𝑠𝑠 + 𝑑𝑑,
◦ Gain: 𝐺𝐺 = 𝒘𝒘𝑟𝑟𝑥𝑥

𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥
◦ Noise energy 𝐸𝐸 𝑑𝑑 2 = 𝑁𝑁0
◦ SNR: 𝛾𝛾 = 𝐺𝐺 2𝐸𝐸𝑠𝑠

N0
= 𝒘𝒘𝑟𝑟𝑥𝑥∗ 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥 2𝐸𝐸𝑠𝑠

N0

Want to select the beamforming vectors to maximize the SNR:

max
𝒘𝒘𝑟𝑟𝑥𝑥,𝒘𝒘𝑡𝑡𝑥𝑥

𝒘𝒘𝑟𝑟𝑥𝑥
𝑇𝑇 𝑯𝑯𝒘𝒘𝑡𝑡𝑥𝑥

2 s. t. 𝒘𝒘𝑡𝑡𝑥𝑥 = 𝒘𝒘𝑟𝑟𝑥𝑥 = 1

Theorem:  Let 𝑯𝑯 = 𝑼𝑼𝚺𝚺𝑽𝑽∗ be the SVD.  Then, then the optimal vectors are
◦ 𝒘𝒘𝑟𝑟𝑥𝑥 = �𝒖𝒖1 = conjugate of the left singular vector for maximal singular value
◦ 𝒘𝒘𝑡𝑡𝑥𝑥 = �𝒗𝒗1 = conjugate of the right singular vector for maximal singular value
Also, the max value is 𝜎𝜎12 = maximum singular value squared
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CSI Requirements
Optimal BF vectors are maximal singular vectors of channel matrix 𝑯𝑯

Problem:  TX and RX must know 𝑯𝑯 exactly
◦ Channel state information (CSI) must be available at TX and RX
◦ In general, 𝑯𝑯 varies with time and frequency
◦ Hence channel needs to be tracked!

Next lecture we will discuss:
◦ How to track channel in practical systems
◦ Methods to approximate beamforming if exact tracking is not possible
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Outline
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Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling



Modeling the Element Pattern
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Above analysis assumes each element is omni-directional

However, in most systems, each antenna element may also have gain.

In this section, we describe two methods to account for element gain

Method 1.  Pattern multiplication without normalization
◦ Provides a simple approximation of the channel response
◦ But neglects mutual coupling

Method 2.  Pattern multiplication with normalization
◦ More accurate
◦ Partially accounts for mutual coupling

SiBeam 60 GHz array

12 TX and 12 RX elements.   



Uncoupled Array Assumption
Consider a TX array with 𝑁𝑁 elements in free space 
◦ Analysis for RX is similar

In isolation, we know each TX signal 𝑠𝑠𝑛𝑛 will produce an RX signal 

𝑟𝑟 = 𝑔𝑔0𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛 Ω 𝐴𝐴𝐸𝐸(Ω)
◦ 𝑔𝑔0 = free space path gain from a reference location 
◦ 𝑢𝑢𝑛𝑛 Ω = phase shift due to the element location relative to reference  
◦ 𝐴𝐴𝐸𝐸 Ω = complex element gain (assumed common for all elements)

Uncoupled array assumption:
The response from the 𝑁𝑁 antennas together is given by super-position

𝑟𝑟 = �
𝑛𝑛=1

𝑁𝑁

𝑔𝑔0𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛 Ω 𝐴𝐴𝐸𝐸(Ω) = 𝑔𝑔0𝐴𝐴𝐸𝐸 Ω 𝒔𝒔𝑇𝑇𝒖𝒖 Ω

◦ This is the assumption we have made implicitly up to now
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Pattern Multiplication
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Previous slide shows that ignoring mutual coupling, the TX channel response is:

𝒉𝒉 ≈ 𝑔𝑔0𝒗𝒗0𝑇𝑇 Ω , 𝒗𝒗0 Ω = 𝐴𝐴𝐸𝐸 Ω 𝒖𝒖(Ω)

We call 𝒗𝒗 Ω the pattern multiplication signature or un-normalized spatial signature
◦ Multiplication of the array spatial signature with  the element pattern

Key properties:
◦ TX channel is 𝒉𝒉 = 𝑔𝑔0𝒗𝒗 Ω
◦ Optimal BF vector 𝒘𝒘 Ω = 1

𝒗𝒗0 Ω
�𝒗𝒗0 Ω = 1

𝑀𝑀
�𝒖𝒖 Ω

◦ Optimal BF gain   |𝒘𝒘 Ω 𝑇𝑇𝒗𝒗0 Ω |2 = 𝐴𝐴𝐸𝐸 Ω 2𝑀𝑀 =peak element gain × peak array gain

◦ Array factor is 𝐴𝐴𝐴𝐴 Ω,Ω0 = 𝒘𝒘 Ω0 𝑇𝑇𝒗𝒗0 Ω 2 = 1
𝑀𝑀
𝐴𝐴𝐸𝐸 Ω 2 𝒖𝒖∗ Ω0 𝒖𝒖 Ω 2



Impedance and Resistance Matrices
To model mutual coupling, we need some simple network theory

The input to an array can be modeled as an 𝑁𝑁 port network
◦ Each “port” has an input current 𝐼𝐼𝑛𝑛 and voltage 𝑉𝑉𝑛𝑛
◦ Physically, the port would be the antenna feed
◦ The currents and voltages are represented in complex baseband

Any 𝑁𝑁 port network is characterized by an 𝑁𝑁 × 𝑁𝑁 impedance matrix 𝒁𝒁
𝑽𝑽 = 𝒁𝒁𝑰𝑰

◦ 𝑰𝑰 and 𝑽𝑽 are the vector of currents and voltages
◦ The impedance matrix accounts for coupling between ports

The real power consumed in the network is
𝑃𝑃 =

1
2
𝑅𝑅𝑒𝑒𝑎𝑎𝑅𝑅 𝑰𝑰∗𝑽𝑽 =

1
2
𝑅𝑅𝑒𝑒𝑎𝑎𝑅𝑅 𝑰𝑰∗𝒁𝒁𝑰𝑰 =

1
2
𝑰𝑰∗𝑹𝑹𝑰𝑰

◦ 𝑹𝑹 = 1
2
𝒁𝒁 + 𝒁𝒁∗ =Hermitian part of 𝑍𝑍.  Called the resistance matrix
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Normalized Steering Vector
To account for coupling between antennas, define the normalized spatial signature

𝒗𝒗 Ω = 𝑸𝑸 ⁄−1 2𝐴𝐴𝐸𝐸 Ω 𝒖𝒖 Ω , 𝑸𝑸 = �
−𝜋𝜋

𝜋𝜋
�
− ⁄𝜋𝜋 2

⁄𝜋𝜋 2
𝐴𝐴𝐸𝐸 Ω 2 𝒖𝒖 Ω 𝒖𝒖∗ Ω cos 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙

◦ 𝒗𝒗 Ω is a scaled version of the spatial signature with pattern multiplication 𝒗𝒗0 Ω
◦ 𝑸𝑸 is called the normalization matrix, 𝑸𝑸 ⁄−1 2 = inverse of the matrix square root

Theorem:  The TX channel in free space is 𝒉𝒉 = 𝑔𝑔0𝒗𝒗𝑇𝑇 𝛺𝛺
◦ Recall, 𝑔𝑔0 is the free space channel from the reference point in the array
◦ Proved below using network theory

Conclusion: 𝒗𝒗 Ω represents the array response 
◦ Properly accounts for coupling between elements
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Normalized Channel Response
Theorem:  There exists a constant 𝐶𝐶 > 0 such that if 𝒔𝒔 = 𝐶𝐶�𝑸𝑸 ⁄1 2𝐈𝐈:
◦ The total transmitted power is 𝒔𝒔 2

◦ The received signal at a point in free space is 𝑟𝑟 = 𝑔𝑔0𝒗𝒗𝑇𝑇 𝛺𝛺 𝒔𝒔 where 𝑔𝑔0 is the free space SISO channel
◦ Received power is 𝑟𝑟 2 = 𝑔𝑔0 2 𝒗𝒗𝑇𝑇 𝛺𝛺 𝒔𝒔 2

Proof:  Will be done in several slides below

Conclusion: 𝒗𝒗 Ω represents the effective array response 
◦ Properly accounts for coupling between elements
◦ Based on a transformation of the signals to array
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Numerical Procedure for Normalization
Get angles Ω𝑘𝑘 = 𝜃𝜃𝑘𝑘 ,𝜙𝜙𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾 uniformly in 𝜃𝜃𝑘𝑘 ∈ −𝜋𝜋

2
, 𝜋𝜋
2

, 𝜙𝜙𝑘𝑘 ∈ −𝜋𝜋,𝜋𝜋

Get steering vectors 𝒖𝒖 Ω𝑘𝑘 and element gain 𝐴𝐴𝐸𝐸(Ω𝑘𝑘) at each angle

Compute normalization matrix:

𝑸𝑸 =
1
𝑐𝑐𝐾𝐾

�
𝑘𝑘=1

𝐾𝐾

cos 𝜃𝜃𝑘𝑘 𝐴𝐴𝐸𝐸 Ω𝑘𝑘 2𝒖𝒖 Ω𝑘𝑘 𝒖𝒖∗ Ω𝑘𝑘 , 𝑐𝑐 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

cos 𝜃𝜃𝑘𝑘

◦ Scale factor 𝑐𝑐 used to normalize the summation

The normalized steering vector at any new angle Ω is 𝒗𝒗 Ω = 𝐴𝐴𝐸𝐸(Ω)𝑸𝑸− ⁄1 2𝒖𝒖(Ω)

The complex gain with beamforming vector 𝒘𝒘 is 𝒘𝒘𝑇𝑇𝒗𝒗 Ω
◦ Power gain 𝐺𝐺 = 𝒘𝒘𝑇𝑇𝒗𝒗 Ω 2
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Array Element Example
Element:
◦ Patch Microstrip
◦ Max gain 10 dBi gain

Array:  4x4 URA
◦ Max gain = 10 log10 16 = 12 dBi
◦ Has directivity in back and front
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Array Factor Examples
For each target angle:
◦ Find optimal BF vector
◦ Compute resulting array factor

Array factor computed for
◦ No normalization (approximate)
◦ Normalization

We see approximation is close
◦ But overestimates peak gain
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No normalization Normalization

Target angle
𝜃𝜃,𝜙𝜙 = (0,0)

𝜃𝜃,𝜙𝜙 = (30,45)



Max Gain
Plotted:
◦ Max gain in each angle

With no normalization:
◦ Max gain at boresight= 12 + 10.1 = 22.1 dBi

With normalization:
◦ Max gain at boresight= 18.3 dBi
◦ Max gain at other angles more uniform
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Proof Part 1:  Analyzing in Current Domain
Let 𝑰𝑰 = 𝐼𝐼1, … , 𝐼𝐼𝑁𝑁 𝑇𝑇 = vector of complex baseband current inputs to the antennas 

Consider electric field at angle Ω = (𝜙𝜙,𝜃𝜃) at far distance 𝑑𝑑
Assume the electric field from a single current 𝐼𝐼𝑛𝑛 is:

𝐸𝐸(Ω) =
𝑐𝑐
𝑑𝑑
𝐴𝐴𝐸𝐸 Ω 𝑢𝑢𝑛𝑛(Ω)𝐼𝐼𝑛𝑛

◦ 𝑐𝑐 = some proportionality constant

We know super-position applies for currents
◦ This is a consequence of Maxwell’s equations

Hence with all 𝑁𝑁 currents:

𝐸𝐸 Ω =
𝑐𝑐
𝑑𝑑
𝐴𝐴𝐸𝐸 Ω �

𝑛𝑛=1

𝑁𝑁

𝑢𝑢𝑛𝑛 Ω 𝐼𝐼𝑛𝑛 =
𝑐𝑐
𝑑𝑑
𝐴𝐴𝐸𝐸 Ω 𝒖𝒖 Ω 𝑇𝑇𝑰𝑰
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Proof Part 2: Total Radiated Power
From previous slide:  Electric field is 𝐸𝐸(Ω) = 𝑐𝑐

𝑑𝑑
𝐴𝐴𝐸𝐸 Ω 𝒖𝒖𝑇𝑇 Ω 𝑰𝑰

Hence, power intensity is 𝑈𝑈 Ω = 𝑑𝑑2

2𝜂𝜂
𝐸𝐸 Ω 2 = 𝐶𝐶 𝐴𝐴𝐸𝐸 Ω 𝒖𝒖𝑇𝑇 Ω 𝑰𝑰 2

◦ 𝐶𝐶 = 𝑐𝑐 2

2𝜂𝜂
, 𝜂𝜂 =characteristic impedance

Hence, the total radiated power is:

𝑃𝑃𝑡𝑡𝑥𝑥 = ∫ 𝑈𝑈 Ω 𝑑𝑑Ω = �
−𝜋𝜋

𝜋𝜋
�
− ⁄𝜋𝜋 2

⁄𝜋𝜋 2
𝑈𝑈 𝜙𝜙, 𝜃𝜃 cos 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙 = 𝐶𝐶𝑰𝑰∗�𝑸𝑸𝑰𝑰

Here 𝑸𝑸 = ∫−𝜋𝜋
𝜋𝜋 ∫− ⁄𝜋𝜋 2

⁄𝜋𝜋 2 𝐴𝐴𝐸𝐸 Ω 2 𝒖𝒖 Ω 𝒖𝒖∗ Ω cos 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙

�𝑸𝑸 =elementwise complex conjugate of 𝑸𝑸
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Proof Part 3: Array Resistance Matrix
From previous slide we saw that :

𝑃𝑃𝑡𝑡𝑥𝑥 = 𝐶𝐶𝑰𝑰∗�𝑸𝑸𝑰𝑰

◦ �𝑸𝑸 can be computed from the integral of spatial signatures

We know from network theory the power consumed is 1
2
𝑰𝑰∗𝑹𝑹𝑰𝑰

◦ 𝑹𝑹= resistance matrix of the array

If the antennas are lossless, this power must be transmitted

Hence 𝑃𝑃𝑡𝑡𝑥𝑥 = 1
2
𝑰𝑰∗𝑹𝑹𝑰𝑰

Conclusions:
◦ The matrix �𝑸𝑸 is a scaled version of the antenna array resistance matrix
◦ The matrix captures the coupling of currents and voltages between antennas
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Proof Part 4:  Computing the Channel
Up to now we have shown:
◦ Total transmitted power is 𝑃𝑃𝑡𝑡𝑥𝑥 = 𝐶𝐶𝑰𝑰∗�𝑸𝑸𝑰𝑰
◦ Radiation intensity at angle Ω is 𝑈𝑈 𝛺𝛺 = 𝐶𝐶 𝐴𝐴𝐸𝐸 𝛺𝛺 𝒖𝒖𝑇𝑇 𝛺𝛺 𝑰𝑰 2

Define:
◦ Power input vector: 𝒔𝒔 = 𝐶𝐶�𝑸𝑸 ⁄1 2𝐈𝐈
◦ Normalized steering vector: 𝒗𝒗 Ω = 𝐴𝐴𝐸𝐸(Ω)𝑸𝑸− ⁄1 2𝒖𝒖(Ω)

With these definitions:
◦ Total transmitted power is 𝑃𝑃𝑡𝑡𝑥𝑥 = 𝐶𝐶𝑰𝑰∗𝑸𝑸𝑰𝑰 = 𝒔𝒔 𝟐𝟐

◦ Radiation intensity at angle Ω is 𝑈𝑈 𝛺𝛺 = 𝐶𝐶 𝐴𝐴𝐸𝐸 𝛺𝛺 𝒖𝒖𝑇𝑇 𝛺𝛺 𝑰𝑰 2 = 𝒗𝒗𝑇𝑇 𝛺𝛺 𝒔𝒔 2

Hence 𝒗𝒗𝑇𝑇 𝛺𝛺 𝑠𝑠 2 is the power gain relative to free space propagation

Therefore, channel can be modeled as 𝑔𝑔0𝒗𝒗𝑇𝑇 𝛺𝛺 𝒔𝒔 is the free space channel
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