Unit 8. Multiple Antennas and Beamforming

EL-GY 6023. WIRELESS COMMUNICATIONS

PROF. SUNDEEP RANGAN

Outline

- Antenna Arrays and the Spatial Signature
- □ Receive Beamforming and SNR Gain with a Single Path

Array Factor

- □ Transmit Beamforming with a Single Path
- Multipath and MIMO Channels
- □Linear Algebra and SVD Review
- Beamforming Gains in Multipath Channels
- Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Antenna Arrays

Antenna arrays: Structure with multiple antennas

- $^\circ~$ At TX and/or RX
- Key to 5G mmWave and massive MIMO

Two key benefits

- Beamforming: This lecture
 - Concentrate power in particular directions
 - Increases SNR and may enable spatial diversity
 - Requires arrays at *either* TX or RX

□Spatial multiplexing: Later

- Enables transmission in multiple virtual paths
- Increases degrees of freedom
- $^\circ~$ Requires multiple antennas at both TX and RX

IBM 28 GHz array 32 element dual polarized array Sadhu et al, ISSCC 2017

Aurora C-Band Massive MIMO array 64 elements, 5-6 GHz https://www.taoglas.com/

Multiple Receive Antennas

Single Input Multiple Output

- One TX antenna
- M RX antennas

Transmit a scalar signal x(t)

Receive a vector of signals: • $\mathbf{r}(t) = (r_1(t), ..., r_M(t))^T$

Uhat is the channel from x(t) to r(t)?

□Want channel in complex baseband

Channel vs. Position

Consider single path channel that arrives at origin with:

 $\,\circ\,$ Delay $\tau_0,$ complex gain $g_0,$ AoA of $\theta\,$ relative to z-axis

Transmit signal s(t)

 \Box Look at RX signal r(x, t) as a function of position x

Assume RX position, x, is close to origin

• $B|x| \ll f_c \lambda$, B = bandwidth of s(t)

□ Phase rotation with displacement:

• Baseband response at x is (proof on next slide):

Proof of Phase Rotation with Displacement

Delay of path at x is: $\tau(x) = \tau_0 - \frac{x \sin \theta}{c}$

Hence there is an additional delay: $-\frac{x \sin \theta}{c}$

 \Box Baseband response at x:

$$r(x,t) = g_0 e^{2\pi j x \sin \theta / \lambda} s(t - \tau(x))$$

RX position

6

$$\Box \text{Also, } s(t - \tau(x)) \approx s(t - \tau_0) \text{ if } B|\tau(x) - \tau_0| \ll 1$$

But, by assumption of small displacement: $B|\tau(x) - \tau_0| \le \frac{B|x|}{c} = \frac{B|x|}{\lambda f_c} \ll 1$

$$\Box \text{Hence, } r(x,t) \approx g_0 e^{2\pi j x \sin \theta / \lambda} s(t - \tau_0)$$

Response for a ULA

Uniform Linear array (ULA)

 $\circ M$ antenna positions spaced d apart

Transmit signal s(t)

 $\,\circ\,$ Channel single path with AoA heta , complex gain g

QResponse at position: $r_m(t) = g_0 e^{2\pi j(n-1)d \sin \theta/\lambda} s(t-\tau_0)$

In vector notation, we can write $\mathbf{r}(t) = \mathbf{h}s(t - \tau_0)$

 \circ **h** is the channel vector

$$\boldsymbol{h} = g \begin{bmatrix} e^{2\pi j 0 d \sin \theta / \lambda} \\ \vdots \\ e^{2\pi j (M-1) d \sin \theta / \lambda} \end{bmatrix} = g \boldsymbol{u}(\theta)$$

Response Decomposition

□ For a single path channel, the channel vector has two components:

$$r(t) = \mathbf{h}(\theta)s(t - \tau_0), \qquad \mathbf{h}(\theta) = g\mathbf{u}(\theta)$$

Scalar channel gain, *g*

• Complex channel gain at a reference position in the array

\Box Vector spatial signature, $u(\theta)$

$$\circ \boldsymbol{u}(\theta) = \begin{bmatrix} e^{2\pi j 0 d \sin \theta / \lambda} \\ \vdots \\ e^{2\pi j (M-1) d \sin \theta / \lambda} \end{bmatrix}$$

- Vector of phase shifts from the reference
- Also called the steering vector (reason for name will be clear later)

Array Response in 3D

Many arrays place elements over 2D area

Uniform rectangular array (URA):

- $M \times N$ grid of elements
- $^{\circ}\,$ Spaced d_{χ} and d_{y}
- Also called uniform planar array (UPA)
- $\Box \text{Incident angle } \Omega = (\phi, \theta)$
 - (Azimuth, elevation) or (azimuth, inclination)

□Spatial signature:

• $u_{mn}(\Omega) = \text{complex response to antenna } (m, n)$

•
$$u_{mn}(\Omega) = \exp\left[\frac{2\pi i}{\lambda} \left(md_x \sin\theta \cos\phi + nd_y \sin\theta \sin\phi\right)\right]$$

Mutual Coupling

The above formulas assume there is no mutual coupling

□ Mutual coupling:

- Signals on one antenna scatter to another antenna
- Changes the antenna response

□ Mutual coupling effect is typically large when:

- Antennas are close
- Or arrays are combined with highly directive elements

□We will show how to account for mutual coupling at the end of unit

Wang, Zhengzheng. "Complete tool for predicting the mutual coupling in non-uniform arrays of rectangular aperture radiators." (2017).

MATLAB Phased Array Toolbox

Powerful toolbox

Routines for:

- Defining and visualizing arrays
- Computing beam patterns
- Beamforming
- MIMO
- Radar
- •

Example: Defining a ULA

Computing the Spatial Signature

Compute the spatial signature with the SteeringVector object

ylabel('Real spatial sig');

Example: Defining a URA

Define and view the array

□Use the phased.URA class

Can compute steering vector similarly

```
% Construct the array
nant = [4,8];
dsep = 0.5*lambda;
arr = phased.URA(nant,dsep,'ArrayNormal','x');
```

```
% Plot the array.
% You can also use, arr.viewArray()
elemPos = arr.getElementPosition();
clf('reset');
plot(elemPos(2,:), elemPos(3,:), 'o');
grid on;
xlabel('y');
ylabel('z');
```


A 4 x 8 URA with normal axis aligned on x

Multiple Antennas in Commercial Systems

□Sub 6 GHz systems: Mostly 1 to 4 antennas on base stations or smart phones

□ Form factor restricts larger number of antennas

WiFi Router Linksys AC2200 with 4TX/RX

2x2 LTE base station antennaCros-polarization16 dBi element gain, 90 deg sector750x120x60mm

K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S. He, "Body-Insensitive Multimode MIMO Terminal Antenna of Double-Ring Structure," in *IEEE Transactions on Antennas and Propagation*, vol. 63, no. 5, pp. 1925-1936, May 2015.

Massive MIMO

□ Massive MIMO:

- Many base station antennas
- 64 to 128 in many systems today

Significant capacity increase

• Typically 8x by most estimates

Use SDMA

• Will discuss this later

Beamforming and MmWave

To compensate for high isotropic path loss, mmWave systems need large number of antennas

G 5G handsets: Multiple arrays with 4 to 8 antennas each

□5G base stations: 64 to 256 elements

IBM 28 GHz array 32 element dual polarized array Sadhu et al, ISSCC 2017

Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user equipment." 2018 IEEE 5G World Forum (5GWF). IEEE, 2018.

Outline

Antenna Arrays and the Spatial Signature

Receive Beamforming and SNR Gain with a Single Path

Array Factor

□ Transmit Beamforming with a Single Path

Multipath and MIMO Channels

□Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

RX Beamforming

Consider a general channel: r = hx + n

• 1 input, M outputs

Beamforming: Take a linear combination of signals • $z = w^T r = \sum_j w_j r_j$

• w is called beamforming vector for multiple antennas

Creates effective SISO channel:

$$z = \boldsymbol{w}^T \boldsymbol{r} = (\boldsymbol{w}^T \boldsymbol{h}) x + \boldsymbol{w}^T \boldsymbol{n} = \alpha x + v$$

- \circ 1 input *x*, 1 output symbol *z*
- Gain: $\alpha = \boldsymbol{w}^T \boldsymbol{h}$
- Noise: $v = w^T n$

Conjugate Transpose Conventions

□ For beamforming, we will use the following conventions

Complex conjugate of a complex scalar z = a + bi is denoted $\overline{z} = a - bi$

Unless otherwise specified, vectors are column vectors: $x = \begin{vmatrix} x_1 \\ \vdots \end{vmatrix}$

□Transpose: $\mathbf{x}^T = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$ □Conjugate transpose: $\mathbf{x}^* = \begin{bmatrix} x_1^* & \cdots & x_n^* \end{bmatrix}$ □Elementwise conjugate: $\overline{\mathbf{x}} = \begin{bmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_n \end{bmatrix}$

 $^{\circ}\,$ Takes conjugate of each element but keeps x a column vector

Beamforming Analysis

Linear combining: $z = w^T r = (w^T h)x + w^T n$

- Gain: $\alpha = \boldsymbol{w}^T \boldsymbol{h}$
- Noise: $v = w^T n$

Analysis: Let

- $E_x = E |x|^2$ = average symbol energy
- Assume noise $n_m \sim CN(0, N_0)$ (i.i.d. complex Gaussian noise)

□Then, after combining;

- Signal energy = $|\boldsymbol{w}^T \boldsymbol{h}|^2 E_{\chi}$
- Noise: v is Gaussian with $E|v|^2 = ||w||^2 N_0$
- SNR is:

$$\gamma = \frac{|\boldsymbol{w}^T \boldsymbol{h}|^2 E_x}{\|\boldsymbol{w}\|^2 N_0}$$

Maximum Ratio Combining

From previous slide: SNR is $\gamma = \frac{|w^T h|^2 E_x}{||w||^2 N_0}$

AMaximum ratio combining: Select BF vector to maximize SNR: $\hat{w} = \arg \max_{w} \frac{|w^T h|^2 E_x}{||w||^2 N_0}$

Theorem: The MRC weighting vector and maximum SNR is:

$$\widehat{\boldsymbol{w}} = c \overline{\boldsymbol{h}} \Rightarrow \gamma_{MRC} = \|\boldsymbol{h}\|^2 \frac{E_x}{N_0}$$

Align BF vector with the conjugate of the channel

□Also called conjugate beamforming

Proof of the MRC Solution

■We want to maximize
$$\widehat{w} = \arg \max_{w} \frac{|w^T h|^2 E_x}{||w||^2 N_0}$$

■Write the inner product as:
 $\overline{h}^* w = \sum w_i \overline{h}_i = \sum w_i h_i = |w^T h|$

■Hence, we want to maximize
$$\widehat{w} = \arg \max_{w} \frac{|\overline{h}^* w|^2 E_x}{\|w\|^2 N_0}$$

■From Cauchy-Schwartz: $|\overline{h}^* w|^2 = \|w\|^2 \|\overline{h}\|^2 \cos \theta$
• Hence, $\gamma = \|\overline{h}\|^2 \frac{E_x}{N_0} \cos \theta = \|h\|^2 \frac{E_x}{N_0} \cos \theta$
• Maximized with $\cos \theta = 1 \Rightarrow \theta = 0$

 \Box So, we take $w = c\overline{h}$

MRC Gain

SNR with MRC: $\gamma_{MRC} = \|\boldsymbol{h}\|^2 \frac{E_x}{N_0}$

SNR on channel *i* is: $\gamma_i = \frac{|h_i|^2 E_x}{N_0}$

• Average SNR is:
$$\gamma_{avg} = \frac{1}{M} \sum_{i=1}^{M} \gamma_i = \frac{1}{M} \sum_{i=1}^{M} |h_i|^2 \frac{E_x}{N_0} = \frac{1}{M} ||h||^2 \frac{E_x}{N_0}$$

 \Box MRC increases SNR by a factor of M relative to average per channel SNR

$$\Box \text{Beamforming gain} = \frac{\gamma_{MRC}}{\gamma_{avg}} = M$$

Example: Suppose average SNR per antenna is 10 dB.

- With M = 16 antennas and MRC, SNR = $10 + 10 \log_{10}(16) = 10 + 4(3) = 22$ dB
- Gain increases significantly!

■Note: The gain assumes no mutual coupling.

 $\,\circ\,$ Once antennas are close, the gain will no longer increase by M

Single Path Channel Case

Consider special case of single path channel: $\mathbf{r} = g_0 \mathbf{u}(\Omega) x + \mathbf{n}$ • Channel is $\mathbf{h} = g_0 \mathbf{u}(\Omega)$

SNR per antenna (before beamforming):

•
$$\gamma_0 = \frac{E_x |g_0|^2}{N_0} |u_m(\Omega)|^2 = \frac{E_x |g_0|^2}{N_0}$$

 $\,{}^{\circ}\,$ Assume $u_m(\Omega)$ includes only phase shifts

SNR after BF:
$$\gamma = \frac{|w^T u(\Omega)|^2}{\|w\|^2} \gamma_0$$

 $\Box MRC \text{ beamforming: } \widehat{\boldsymbol{w}} = c \overline{\boldsymbol{u}}(\Omega) \text{ and } \gamma = \|\boldsymbol{u}(\Omega)\|^2 \gamma_0 = M \gamma_0$

Conclusions:

- Optimal (MRC) beamforming vector is aligned to the conjugate of the spatial signature
- Optimal SNR gain = M (assuming no mutual coupling)
- Linear gain with number of antennas

Example Problem

Consider a system

- TX power = 23 dBm with antenna directivity = 10 dBi
- $^{\circ}$ Free space path loss d = 1000 m
- Sample rate = 400 Msym/s
- Noise energy = -170 dBm/Hz (including NF)
- RX antenna directivity = 5 dBi and 8 elements

□ Find SNR per antenna and SNR with MRC

□Solution: We get a 9 dB gain!

```
% SNR per antenna
plomni = fspl(dist, lambda);
EsN0Ant = ptx - plomni - 10*log10(bw) - Enoise + dirtx + dirrx;
```

% SNR with MRC

```
EsNOMRC = EsNO + 10*log10(nantrx);
```

SNR	per	ant:	0.59
SNR	with	MRC:	9.62

In-Class Problem: Simple QPSK simulation

Simulate QPSK transmission over a single path channel

Outline

Antenna Arrays and the Spatial Signature

□ Receive Beamforming and SNR Gain with a Single Path

Array Factor

- □ Transmit Beamforming with a Single Path
- Multipath and MIMO Channels
- □Linear Algebra and SVD Review
- Beamforming Gains in Multipath Channels
- Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Array Factor

 \Box Suppose RX aligns antenna for AoA $\Omega_0 = (\theta_0, \phi_0)$

- **But** signal arrives from AoA $\Omega = (\theta, \phi)$
- Define the (complex) array factor

$$AF(\Omega, \Omega_0) = \widehat{\boldsymbol{w}}^T(\Omega_0)\boldsymbol{u}(\Omega) = \frac{1}{\sqrt{M}}\boldsymbol{u}^*(\Omega_0)\boldsymbol{u}(\Omega)$$

- Assume $\|\widehat{w}\| = 1$
- $\,\circ\,$ Indicates directional gain as a function of AoA heta
- $\,\circ\,$ Dependence on θ_0 often omitted
- $\Box SNR gain = |AF(\Omega, \Omega_0)|^2$
 - Max value = M
 - Usually measured in dBi (dB relative to isotropic)
 - Also called the array response

Uniform Linear Array

 \Box Spatial signature (for azimuth angle ϕ):

- $\boldsymbol{u}(\phi) = \left[1, e^{j\beta}, \dots, e^{i(M-1)\beta}\right]^T, \ \beta = \frac{2\pi d \cos \phi}{\lambda}$
- Note change from $\sin \theta$ to $\cos \phi$. (Array aligned on y-axis)

Optimal BF vector for AoA ϕ_0 $\hat{w}(\phi_0) = \frac{1}{\sqrt{M}} \overline{u}(\phi_0)$ (Note normalization)

Array factor:

$$AF(\phi, \phi_0) = \frac{1}{\sqrt{M}} \boldsymbol{u}^*(\phi_0) \boldsymbol{u}(\phi) = \frac{e^{j(M-1)\gamma/2}}{\sqrt{M}} \frac{\sin(M\gamma/2)}{\sin(\gamma/2)}$$

$$\circ \gamma = \frac{2\pi d}{\lambda} (\cos \phi - \cos \phi_0),$$

DAntenna gain: $|AF|^2 = \frac{\sin^2(M\gamma/2)}{M \sin^2(\gamma/2)}$

Antenna Gain for ULA

Broadside: $\theta_0 = 0$

 $d = \lambda/2$, M = 8

□ Maximum gain of

□Note:

• Endfire vs. broadside

• Beamwidth $\propto 1/M$

Plotting the Array Factor

□Create a SteeringVector object

Get steering vectors

Compute inner products

% Create a steering vector object sv = phased.SteeringVector('SensorArray',arr);

% Reference angles to plot the AF azPlot = [0, 90]; nplot = length(azPlot);

for iplot = 1:nplot

```
% Get the SV for the beam direction.
% Note: You must call release method of the sv
% before each call since it expects the same size
% of the input
ang0 = [azPlot(iplot); 0];
sv.release();
u0 = sv(fc, ang0);
```

% Normalize the direction u0 = u0 / norm(u0);

u0 = u0 / norm(u0);

% Get the SV for the AoAs. Take el=0
npts = 1000;
az = linspace(-180,180,npts);
el = zeros(l,npts);
ang = [az; el];
sv.release();
u = sv(fc, ang);

% Compute the AF and plot it
AF = 10*logl0(abs(sum(conj(u0).*u, 1)).^2);

% Plot it subplot(1,nplot,iplot); plot(ang(1,:), AF, 'LineWidth', 2);

Polar Plot

□Useful to visualize in polar plot

■Note key features:

- Direction of maximum gain
- Sidelobes
- Pattern repeated on reverse side

% Polar plot AFmin = -30; subplot(l,nplot,iplot); polarplot(deg2rad(az), max(AF, AFmin),'LineWidth', 2); rlim([AFmin, 10]); grid on;

Key Statistics

Full null beamwidth (zero to zero) Half power beamwidth

(-3dB to -3dB)

First sidelobe level

	Broadside $(\theta_0 = \pi/2)$	End-fire $(\theta_0 = 0)$
FNBW	$2\left[\frac{\pi}{2} - \cos^{-1}\left(\frac{\lambda}{N\Delta}\right)\right]$	$2\cos^{-1}\left(1-\frac{\lambda}{N\Delta}\right)$
	(30°)	(83°)
HPBW	$2\left[\frac{\pi}{2}-\cos^{-1}\left(\frac{1.39\lambda}{\pi N\Delta}\right)\right]$	$2\cos^{-1}\left(1-\frac{1.39\lambda}{\pi N\Delta}\right)$
	(13°)	(54°)
FSLL	$\frac{1}{N \left \sin \left(\frac{3\pi}{2N} \right) \right }$	$\frac{1}{N\left \sin\left(\frac{3\pi}{2N}\right)\right }$
	(-13 dB)	(-13 dB)
D_0	$2N\Delta/\lambda$	$4N\Delta/\lambda$
	(9 dB)	(12 dB)

From Jacobs University slides

 \Box Values in () for: $d = \lambda/2$, M = 8

Grating Lobes

 $\Box \text{When } d > \frac{\lambda}{2}$

Obtain multiple peaks

Does not direct gain in one direction

```
dsep = 2*lambda; % element spacing
nant = 8; % Number of elements
arr = phased.ULA(nant,dsep);
% Get the SV for the beam direction.
ang0 = [0; 0];
sv.release();
u0 = sv(fc, ang0);
arr.patternAzimuth(fc,'Weights', u0);
```


Directivity (dBi), Broadside at 0.00 °

Plotting the Patterns

□ MATLAB has excellent routines for 3D patterns

□Note that this plots directivity not array factor

```
sv = phased.SteeringVector('SensorArray',arr);
ang0 = [0; 0];
sv.release();
u0 = sv(fc, ang0);
u0 = u0 / norm(u0);
```


% We can plot the directivity in a 3D plot arr.pattern(fc,'Weights', u0);

elPlot = [0 45]; arr.patternAzimuth(fc, elPlot, 'Weights', u0);

Outline

Antenna Arrays and the Spatial Signature

□ Receive Beamforming and SNR Gain with a Single Path

Array Factor

Transmit Beamforming with a Single Path

Multipath and MIMO Channels

□Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Multiple TX antennas

MISO channel

- Multiple input single output
- *M* TX antennas, 1 RX antennas
- Transmit vector: $\mathbf{x}(t) = (x_1(t), ..., x_M(t))^T$
- Scalar RX: r(t)

□ Most of the theory is identical to the SIMO channel

Single Path Channel

First consider single path channel

Similar to the SIMO case, RX signal is:

 $r(t) = g_0 A(\Omega) \boldsymbol{u}^T(\Omega) \boldsymbol{x}(t-\tau)$

- $\circ \, g_0$ path gain
- $\circ~\Omega$ = angle of departure
- $\circ \tau$ = path delay
- $\circ \ oldsymbol{u}(\Omega)$ TX spatial signature
- $A(\Omega)$: complex TX element gain

TX and RX spatial signatures are identical

39

TX Beamforming

RX signal is:
$$r(t) = g_0 \boldsymbol{u}^T(\Omega) \boldsymbol{x}(t-\tau) + n(t)$$

□TX beamforming

- Input scalar information signal s(t)
- Create vector signal to antennas: x(t) = w s(t)

GSignal to antenna *i* is: $x_i(t) = w_i s(t)$

 $\circ w_i$ is a complex weight applied to signal

w is called the TX beamforming vector

• Also called pre-coding

SNR with TX Beamforming

RX signal is: $r = g_0 \boldsymbol{u}^T(\Omega) \boldsymbol{x} + n$

Drop dependence on time to simplify notation

 $\Box \text{With } \boldsymbol{x} = \boldsymbol{w}s \text{ SISO channel is } r = g_0 \boldsymbol{u}^T(\Omega) \boldsymbol{w}s + n$

□ Total transmitted energy across all *N* TX chains is:

- $\circ E_{x} = \sum |w_{j}|^{2} E_{s} = ||\boldsymbol{w}||^{2} E_{s}$
- $^\circ~$ To keep constant total energy: $\|\pmb{w}\|^2=1$
- Assumes no mutual coupling

SNR is
$$\gamma = \frac{|g_0|^2}{N_0} E_s |\boldsymbol{u}^T(\Omega)\boldsymbol{w}|^2 = \gamma_0 |\boldsymbol{u}^T(\Omega)\boldsymbol{w}|^2$$

 $\gamma_0 = \frac{|g_0|^2}{N_0} E_s$ is the SNR for a single antenna

41

MRC TX Beamforming

From previous slide, SNR is: $\gamma = \gamma_0 |u^*(\Omega)w|^2$

To maximize SNR s.t. power constraint

$$\widehat{\boldsymbol{w}} = \arg \max |\boldsymbol{u}^T(\Omega)\boldsymbol{w}|^2 \text{ s.t. } \|\boldsymbol{w}\|^2 = 1$$

MRC TX BF vector: $\widehat{\boldsymbol{w}} = \frac{1}{\sqrt{N}} \overline{\boldsymbol{u}}(\Omega)$

• Align with the conjugate of the spatial signature

• SNR gain =
$$|\boldsymbol{u}^T(\Omega)\widehat{\boldsymbol{w}}|^2 = N$$

Define and compute Array Factor similarly

42

Outline

Antenna Arrays and the Spatial Signature

□ Receive Beamforming and SNR Gain with a Single Path

Array Factor

□ Transmit Beamforming with a Single Path

Multipath and MIMO Channels

□Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

MIMO Channel with a Single Path

Multi-input Multi-Output (MIMO) channel:

- $^{\circ}\,$ TX array with N_t elements
- \circ RX array with N_r elements

□Single path channel:

$$\boldsymbol{r}(t) = g_0 \boldsymbol{u}_{rx}(\Omega^{rx}) \boldsymbol{u}_{tx}^T(\Omega^{tx}) \boldsymbol{x}(t-\tau) = \boldsymbol{H} \boldsymbol{x}(t-\tau)$$

MIMO channel matrix for a single path channel:

 $\boldsymbol{H} = g_0 \boldsymbol{u}_{rx}(\Omega^{rx}) \boldsymbol{u}_{tx}^T(\Omega^{tx})$

Beamforming on a MIMO Channel

Consider MIMO channel, r = Hx + v, $H \in \mathbb{C}^{M \times N}$, $v \sim CN(0, N_0I)$

Channel on time and frequency resource

 \Box Apply TX beamforming: $x = w_{tx}s$

• Assume $||w_{tx}|| = 1$ so total transmit energy is $E_s = E|s|^2$

Apply RX beamforming: $z = w_{rx}^T r$

• Assume $||w_{rx}|| = 1$ so total received noise energy $E|w_{rx}^T v|^2 = N_0$

■ Equivalent channel: $z = w_{rx}^T r = Gs + d$, • $G = w_{rx}^T H w_{tx}$ = complex beamformed channel gain • Noise energy is $E|w_{rx}^T v|^2 = N_0$

SNR with beamforming:
$$\gamma = \frac{|G|^2 E_s}{N_0} = \frac{|w_{rx}^T H w_{tx}|^2 E_s}{N_0}$$

Beamforming Gain with a Single Path

From previous slide, we saw SNR on a MIMO channel is: $\gamma = \frac{|G|^2 E_s}{N_0} = \frac{|w_{Tx}^T H w_{tx}|^2 E_s}{N_0}$ Suppose we have a single path channel: $H = g_0 u_{rx}(\Omega^{rx}) u_{tx}^T(\Omega^{tx})$ Take TX and RX conjugate beamforming vectors: $w_{rx} = \frac{\overline{u}_{rx}(\Omega^{rx})}{\sqrt{N_r}}, w_{tx} = \frac{\overline{u}_{tx}(\Omega^{tx})}{\sqrt{N_t}}$ Then SNR is $\gamma = \frac{|g_0|^2 E_s}{N_0} \frac{|u_{rx}^*(\Omega^{rx})u_{rx}(\Omega^{rx})|^2}{N_r} \frac{|u_{tx}^*(\Omega^{tx})u_{tx}(\Omega^{tx})|^2}{N_t} = \frac{|g_0|^2 E_s}{N_0} N_r N_t$ But $\frac{|g_0|^2 E_s}{N_0}$ is the SNR per antenna

Conclusion: Maximum BF gain on a single path channel is $N_r N_t$

• Again, assuming no mutual coupling

Friis' Law and MmWave

Recall Friis' Law: $\frac{P_r}{P_t} = D_r D_t \left(\frac{\lambda}{4\pi R}\right)^2$

□ Isotropic path loss decreases with λ^2

□ Millimeter Wave systems: Increases f_c^2 • Decreases $\lambda^2 \Rightarrow$ Increase path loss

□But, with beamforming:

- $\,\circ\,$ Directivity $D_r \propto N_r$ and $D_t \propto N_t$
- $\,\circ\,$ Each antenna takes area $\propto\lambda^2$
- So, for fixed total aperture:

$$D_r \propto N_r \propto \frac{1}{\lambda^2}, D_t \propto N_t \propto \frac{1}{\lambda^2}$$

Can compensate isotropic path loss with directivity

47

Friis' Law and MmWave

Condition	Directivity scaling	Path loss scaling
No beamforming	D _i constant	$PL \propto f_c^2$
Beamforming on one side (TX or RX)	$D_1 \propto f_c^2$, D_2 constant	PL constant
Beamforming on both sides (TX and RX)	$D_1, D_2 \propto f_c^2$	$PL \propto f_c^{-2}$

Friis' Law:
$$\frac{P_r}{P_t} = D_1 D_2 \left(\frac{\lambda}{4\pi R}\right)^2$$

Conclusions: With a fixed aperture and beamforming

• Isotropic path loss can be overcome

But systems need very directive beams

• Raises many other issues. E.g. Channel tracking, processing, ...

Multiple Paths

Easy to extend channel response to multiple paths

Each path adds a term with a spatial signature

□Time-domain model

Time-Varying Frequency Response

The channel response can also be described as a time and frequency-varying matrix

$$\boldsymbol{H}(t,f) = \sum_{\ell=1}^{L} g_{\ell} e^{2\pi j (f_{\ell} t - \tau_{\ell} f)} \boldsymbol{u}_{rx}(\Omega_{\ell}^{rx}) \boldsymbol{u}_{tx}^{T}(\Omega_{\ell}^{tx})$$

50

- At time and frequency $\boldsymbol{H}(t, f) \in \mathbb{C}^{N_r \times N_t}$
- $^\circ\,$ Varies in time due to Doppler shifts $f_\ell\,$
- $\,\circ\,$ Varies in frequency due to delay spread τ_ℓ

OFDM Time-Frequency Grid

Consider OFDM channel

- Sub-carrier spacing F_{sc} , symbol time T_{sym}
- $^{\circ}$ Index with k =OFDM symbol index, n = subcarrier index
- **Transmit array**: X[n, k]
 - At each k, n, we transmit a vector $\boldsymbol{X}[n, k] = [X_1[n, k], ..., X_N[n, k]]^T$
 - N = number of TX antennas

Receive array:
$$\boldsymbol{Y}[n, k]$$
:
 $\boldsymbol{Y}[n, k] = \left[Y_1[n, k], \dots, Y_M[n, k]\right]^T$

- $\circ M =$ number of RX antennas
- \circ One *M* dim vector per resource element

OFDM Channel with Multiple RX Antennas

OFDM channel acts as multiplication:

Under normal operation (delay spread is contained in CP):

RX symbol vector Channel matrix • OFDM channel gains can be computed from the multi-path components

$$\boldsymbol{H}[k,n] = \sum_{\ell=1}^{L} g_{\ell} e^{2\pi j \left(T_{sym} k f_{\ell} - F_{sc} n \tau_{\ell}\right)} \boldsymbol{u}_{rx}(\Omega_{\ell}^{rx}) \boldsymbol{u}_{tx}^{*}(\Omega_{\ell}^{tx})$$

 $\boldsymbol{Y}[k,n] = \boldsymbol{H}[k,n] \quad \boldsymbol{X}[k,n]$

TX symbol vector

• T = OFDM symbol time, S = sub-carrier spacing

• For each path: f_{ℓ} =Doppler shift, τ_{ℓ} =Delay, g_{ℓ} =complex gain

Outline

Antenna Arrays and the Spatial Signature

□ Receive Beamforming and SNR Gain with a Single Path

Array Factor

□ Transmit Beamforming with a Single Path

Multipath and MIMO Channels

Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Orthogonal Vectors

- Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} (real or complex)
- Uectors $x, y \in \mathbb{F}^N$ are orthogonal if $\langle x, y \rangle = x^* y = 0$.
 - Write $x \perp y$
 - $^{\circ}\,$ Visually, $x\perp y$ if they are at 90 degrees
- \Box A set of vectors $\boldsymbol{v}_1, \dots, \boldsymbol{v}_K \in \mathbb{F}^N$ are orthonormal
 - $\boldsymbol{v}_i \perp \boldsymbol{v}_j$ when $i \neq j$
 - $\|\boldsymbol{v}_i\| = 1$ for all i
 - Vectors are pairwise orthogonal and unit norm

Orthonormal basis: An orthonormal set $v_1, ..., v_N \in \mathbb{F}^N$

- \circ Any vector can be written $x = \sum lpha_n oldsymbol{v}_n$, $lpha_n = oldsymbol{v}_n^* oldsymbol{x}$
- $\circ \ lpha_n$ are the coefficients of $oldsymbol{x}$ in the basis $oldsymbol{v}_1$, ... , $oldsymbol{v}_N$

Orthogonal and Unitary Matrices

□A matrix $U \in \mathbb{C}^{N \times N}$ is unitary if $U^*U = UU^* = I$

 \Box A matrix $U \in \mathbb{R}^{N \times N}$ is orthogonal if $U^T U = U U^T = I$

• Orthogonal is just the real-valued version of unitary

□Key properties:

- $\circ U$ is orthogonal if and only if columns are orthonormal
- $\circ U$ is orthogonal if and only if rows are orthonormal
- $\,\circ\,$ Taking an inverse is easy $U^{-1}=U^*$

Examples of Orthogonal Matrices

D 2D rotation matrix by
$$\theta$$
: $V = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$

- Can verify that $V^*V = I$
- 3D rotation matrices are also orthogonal

Example with 3 vectors:

• Let
$$\boldsymbol{v}_{1} = \frac{1}{\sqrt{11}} \begin{bmatrix} 3\\1\\1 \end{bmatrix}$$
, $\boldsymbol{v}_{2} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\2\\1 \end{bmatrix}$, $\boldsymbol{v}_{3} = \frac{1}{\sqrt{66}} \begin{bmatrix} -1\\-4\\7 \end{bmatrix}$
• Can verify that $\boldsymbol{v}_{i}^{*} \boldsymbol{v}_{j} = \delta_{ij}$
• Hence the matrix: $\boldsymbol{V} = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66}\\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66}\\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}$

Beamspace Matrices

Consider a ULA with normalized steering vector:

$$\boldsymbol{u}(\phi) = \frac{1}{\sqrt{N}} \left[1, e^{j\beta \cos \phi}, \dots, e^{j(N-1)\beta \cos \phi} \right]^T, \qquad \beta = \frac{2\pi d}{\lambda}$$

$$\square \text{Take } N \text{ angles: } \beta \cos \phi_n = 2\pi \left(\frac{n}{N} - \frac{1}{2} + \frac{1}{N} \right), \quad n = 0, 1, \dots, N-1$$

$$\circ \text{ This is possible if } d \ge \frac{\lambda}{2}$$

The vectors $\boldsymbol{u}(\phi_n)$, n = 0, 1, ..., N - 1 are orthonormal

These are called the beamspace vectors

• An orthonormal basis for the spatial domain

Symmetric and Hermitian Matrices

Definition:

- A matrix $A \in \mathbb{R}^{N \times N}$ is symmetric if $A = A^T$
- A matrix $A \in \mathbb{C}^{N imes N}$ is Hermitian if $A = A^*$

Symmetric is the real version of Hermitian

□ For any *A* symmetric / Hermitian:

- \circ There are an orthonormal set of eigenvectors v_1, \ldots, v_N with eigenvalues $\lambda_1, \ldots, \lambda_N$
- All eigenvalues are real (not complex)

Let $V = [v_1, ..., v_N] \in \mathbb{F}^{N \times N}$ = Matrix with the eigenvectors as the columns

- $\,\circ\,$ Then ${\it V}={\it V}^*$ is orthogonal / unitary
- Hence $A = VDV^*$, $D = diag(\lambda_1, ..., \lambda_N)$ diagonalizable with unitary

Sample Problem

Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Find an orthogonal bases of eigenvectors and their eigenvalues

□Solution: Eigenvalues:

•
$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{bmatrix} = (\lambda - 1)^2 - 4 = 0$$

• $\lambda = 1 \pm 2 = -1,3$

For
$$\lambda = -1$$
, $(\lambda I - A)v = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow v_1 = -v_2$
• Take $v = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, -1 \end{bmatrix}^T$

For
$$\lambda = 3$$
, $(\lambda I - A)v = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow v_1 = v_2$
• Take $v = \frac{1}{\sqrt{2}} [1,1]^T$

Positive Definite Matrices

 \Box Let $A = A^* \in \mathbb{F}^{N \times N}$ be symmetric / Hermitian with eigenvalues $\lambda_1, ..., \lambda_N$

Recall that the eigenvalues are real

Definition:

- A is positive semi-definite if $\lambda_i \ge 0$ for all i
- $\circ A$ is positive definite if $\lambda_i > 0$ for all i

□Notation: A > 0 for positive definite and $A \ge 0$ when A is positive semi-definite

Given the set of the

- $A \ge 0$ if and only if $x^*Ax \ge 0$ for all x
- A > 0 if and only if $x^*Ax > 0$ for all $x \neq 0$

Matrix Square Roots

Theorem: Let $A \in \mathbb{F}^{N \times N}$. Then $A \ge 0$ if and only if $A = BB^*$ for some $B \in \mathbb{F}^{N \times M}$

• Note: The dimension *M* can be anything $(M \ge N \text{ or } M < N)$

Proof:

- (\Rightarrow) Suppose $A \ge 0$. Then $A = UDU^*$, $D = diag(\lambda_1, ..., \lambda_N)$
- Write $B = UD^{1/2}U^*$. $D = diag(\lambda_1^{1/2}, ..., \lambda_N^{1/2})$
- Then: $BB^* = B^2 = UD^{1/2}U^* UD^{1/2}U^* = UDU^* = A$
- Since $A = B^2$ and $B \ge 0$, B is called the matrix square root. Write $B = A^{1/2}$

• (
$$\Leftarrow$$
) Suppose $A = BB^*$.

• Then for any *x*,
$$x^*Ax = x^*BB^*x = ||B^*x||^2 \ge 0$$

61

Singular Value Decomposition

Given matrix $A \in \mathbb{F}^{M \times N}$, an SVD is a factorization of the form, $A = U\Sigma V^T$ where $U \in \mathbb{F}^{M \times M}$, $U^*U = I_M$, a unitary matrix

• $V \in \mathbb{F}^{N \times N}$, $V^*V = I_N$, a unitary matrix

• If $M \ge N$, $\Sigma = \begin{bmatrix} \operatorname{diag}(\sigma_1, \dots, \sigma_N) \\ \mathbf{0}_{(M-N) \times N} \end{bmatrix}$. If $N \ge M$, $\Sigma = [\operatorname{diag}(\sigma_1, \dots, \sigma_M) \quad \mathbf{0}_{N \times (M-N)}]$ \Box Values $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_L \ge 0$, $L = \min(M, N)$. Called the singular values \Box All matrices have an SVD

Example

 $\Box \operatorname{Let} A = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$

Then can check that $A = U\Sigma V^*$

												0	1	0	0	0
0	0	1	0]		2	0	0	0	0		0	0	1	0	0
0	1	0	0		Σ –	0	3	0	0	0	$\mathbf{V}^* =$	$\sqrt{0.2}$	0	0	0	$\sqrt{0.8}$
0	0	0	-1		2 -	0	0	$\sqrt{5}$	0	0		0	0	0	1	0
1	0	0	0	J		0	0	0	0	0		$-\sqrt{0.8}$	0	0	0	$\sqrt{0.2}$

- $\,^\circ\,$ Also verify that $UU^*=I_5$ and $VV^*=I_5$
- $^\circ\,$ This can be found by (cleverly) permute the rows of A
- But, in general, use a computer to compute SVD

 $\mathbf{U} =$

Geometric Interpretation

Let $A = U\Sigma V^*$ and y = Ax

Consider a transformed space

• $w = V^* x$ so $w = [w_1, ..., w_N]$ are the coefficients of the input in the basis $V = [v_1, ..., v_N]$

• $\mathbf{z} = \mathbf{U}^* \mathbf{y}$ so $\mathbf{z} = [z_1, \dots, z_M]$ are the coefficients in the basis $U = [u_1, \dots, u_M]$

Then: $\mathbf{z} = \boldsymbol{\Sigma} \mathbf{w}$ so $z_i = \sigma_i w_i$

 \Box Each input direction \boldsymbol{v}_i is mapped to $\sigma_i \boldsymbol{u}_i$

Consequence:

• SVD finds orthonormal bases *U*, *V* such that matrix *A* is a linear scaling in each basis vector

 $A = U \cdot \Sigma \cdot V^*$

SVD and Rank

Theorem: Suppose $A = U\Sigma V^* \in \mathbb{F}^{M \times N}$, then

 $rank(A) = |\{\sigma_{\ell} > 0\}| =$ num of positive singular values

Ex: Suppose
$$A \in \mathbb{C}^{5 \times 3}$$
 with $\sigma = \{10, 2, 0\}$

• Then: rank(A) = 2

Proof:

- \circ For any x, the output is $y = Ax = U\Sigma V^* x$
- \circ Define $\boldsymbol{z} = \boldsymbol{U}^* \boldsymbol{y}$ and $\boldsymbol{w} = \boldsymbol{V}^* \boldsymbol{x}$
- Then $z_\ell = \sigma_\ell w_\ell$
- $\circ~$ If $r=|\{\sigma_\ell>0\}|,~$ then $\sigma_\ell>0~{\rm for}~\ell=1,\ldots,r$
- $\,\circ\,$ Hence, by varying w_ℓ , we can span a space of dimension r

65

Sum of Rank One Form

□Suppose $A = U\Sigma V^* \in \mathbb{F}^{M \times N}$ with r = rank(A)□Then:

$$\boldsymbol{A} = \sum_{\ell=1}^{\prime} \sigma_{\ell} \boldsymbol{u}_{\ell} \boldsymbol{v}_{\ell}^{*}$$

 $\,\circ\,$ A sum of rank one terms $oldsymbol{u}_\ell oldsymbol{v}_\ell^*$

The vectors $\boldsymbol{u}_{\ell}, \ell = 1, ..., r$ are an orthonormal basis for $Range(\boldsymbol{A})$

The vectors v_{ℓ} , $\ell = 1, ..., r$ are an orthonormal basis for $Range(A^*)$

Outline

Antenna Arrays and the Spatial Signature

□ Receive Beamforming and SNR Gain with a Single Path

Array Factor

□ Transmit Beamforming with a Single Path

Multipath and MIMO Channels

□Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

SVD of the Channel Matrix

Consider a MIMO channel matrix: $\boldsymbol{H} = \sum_{\ell=1}^{L} \sqrt{E_{\ell}} e^{\theta_{\ell}} \boldsymbol{u}_{rx}(\Omega_{\ell}^{rx}) \boldsymbol{u}_{tx}^{T}(\Omega_{\ell}^{tx})$

- $\circ~E_\ell={\sf RX}$ energy per antenna on path ℓ
- θ_{ℓ} = phase that varies with frequency and time

■We can write this as: $\boldsymbol{H} = \sum_{\ell=1}^{L} \sigma_{\ell} \, \widehat{\boldsymbol{u}}_{\ell} \widehat{\boldsymbol{v}}_{\ell}^{*}$ where $\circ \, \widehat{\boldsymbol{u}}_{\ell} = \frac{1}{\sqrt{N_{rx}}} e^{\theta_{\ell}} \boldsymbol{u}_{rx}(\Omega_{\ell}^{rx})$ and $\widehat{\boldsymbol{v}}_{\ell} = \frac{1}{\sqrt{N_{tx}}} \overline{\boldsymbol{u}}_{tx}(\Omega_{\ell}^{tx})$ = normalized steering vectors $\circ \, \sigma_{\ell} = \sqrt{E_{\ell} N_{rx} N_{tx}}$

□Interpretation:

- L = number of paths = rank of H
- $\,\circ\,$ If the signatures $\widehat{u}_\ell\,$ and $\,\widehat{\nu}_\ell\,$ are orthogonal then they are the left and right singular vectors
- In this case, singular values squared $\sigma_{\ell}^2 = E_{\ell} N_{rx} N_{tx} = RX$ energy × beamforming gain

Beamforming on a MIMO Channel

Consider MIMO channel, r = Hx + v, $H \in \mathbb{C}^{M \times N}$, $v \sim CN(0, N_0 I)$

Channel on time and frequency resource

 \Box Apply TX beamforming: $x = w_{tx}s$

• Assume $||w_{tx}|| = 1$ so total transmit energy is $E_s = E|s|^2$

Apply RX beamforming: $z = w_{rx}^T r$

• Assume $||w_{rx}|| = 1$ so total received noise energy $E|w_{rx}^T v|^2 = N_0$

■ Equivalent channel: $z = w_{rx}^T r = Gs + d$, • $G = w_{rx}^T H w_{tx}$ = complex beamformed channel gain • Noise energy is $E|w_{rx}^T v|^2 = N_0$

SNR with beamforming:
$$\gamma = \frac{|G|^2 E_s}{N_0} = \frac{|w_{rx}^T H w_{tx}|^2 E_s}{N_0}$$

Maximizing the SNR

From previous slide, MIMO channel with beamforming is z = Gs + d,

- Gain: $G = \boldsymbol{w}_{rx}^T \boldsymbol{H} \boldsymbol{w}_{tx}$
- Noise energy $E|d|^2 = N_0$
- SNR: $\gamma = \frac{|G|^2 E_s}{N_0} = \frac{|w_{rx}^* H w_{tx}|^2 E_s}{N_0}$

□Want to select the beamforming vectors to maximize the SNR:

$$\max_{w_{rx}, w_{tx}} |w_{rx}^T H w_{tx}|^2 \quad \text{s. t. } ||w_{tx}|| = ||w_{rx}|| = 1$$

70

Theorem: Let $H = U\Sigma V^*$ be the SVD. Then, then the optimal vectors are $w_{rx} = \overline{u}_1$ = conjugate of the left singular vector for maximal singular value $w_{tx} = \overline{v}_1$ = conjugate of the right singular vector for maximal singular value Also, the max value is σ_1^2 = maximum singular value squared

CSI Requirements

Optimal BF vectors are maximal singular vectors of channel matrix **H**

Problem: TX and RX must know **H** exactly

- Channel state information (CSI) must be available at TX and RX
- $\,\circ\,$ In general, \pmb{H} varies with time and frequency
- Hence channel needs to be tracked!

Next lecture we will discuss:

- $\,\circ\,$ How to track channel in practical systems
- Methods to approximate beamforming if exact tracking is not possible

Outline

Antenna Arrays and the Spatial Signature

□ Receive Beamforming and SNR Gain with a Single Path

Array Factor

□ Transmit Beamforming with a Single Path

Multipath and MIMO Channels

□Linear Algebra and SVD Review

Beamforming Gains in Multipath Channels

Adding Element Gains and Normalizing Spatial Signatures for Mutual Coupling

Modeling the Element Pattern

Above analysis assumes each element is omni-directional

However, in most systems, each antenna element may also have gain.

In this section, we describe two methods to account for element gain

□ Method 1. Pattern multiplication without normalization

- Provides a simple approximation of the channel response
- But neglects mutual coupling

□ Method 2. Pattern multiplication with normalization

- More accurate
- Partially accounts for mutual coupling

SiBeam 60 GHz array

12 TX and 12 RX elements.

Uncoupled Array Assumption

 \Box Consider a TX array with N elements in free space

• Analysis for RX is similar

 \Box In isolation, we know each TX signal s_n will produce an RX signal

 $r = g_0 s_n u_n(\Omega) A_E(\Omega)$

- $\circ~g_0=$ free space path gain from a reference location
- $u_n(\Omega)$ = phase shift due to the element location relative to reference
- $A_E(\Omega) = \text{complex element gain (assumed common for all elements)}$

□Uncoupled array assumption:

The response from the N antennas together is given by super-position

$$r = \sum_{n=1}^{N} g_0 s_n u_n(\Omega) A_E(\Omega) = g_0 A_E(\Omega) \boldsymbol{s}^T \boldsymbol{u}(\Omega)$$

 $\,\circ\,$ This is the assumption we have made implicitly up to now

Pattern Multiplication

Previous slide shows that ignoring mutual coupling, the TX channel response is:

$$\boldsymbol{h} \approx g_0 \boldsymbol{v}_0^T(\Omega), \qquad \boldsymbol{v}_0(\Omega) = A_E(\Omega) \boldsymbol{u}(\Omega)$$

 \Box We call $v(\Omega)$ the pattern multiplication signature or un-normalized spatial signature

 $\,\circ\,\,$ Multiplication of the array spatial signature with the element pattern

□Key properties:

$$\circ\;$$
 TX channel is $oldsymbol{h}=g_0oldsymbol{v}(\Omega)$

- Optimal BF vector $\boldsymbol{w}(\Omega) = \frac{1}{\|\boldsymbol{v}_0(\Omega)\|} \overline{\boldsymbol{v}}_0(\Omega) = \frac{1}{\sqrt{M}} \overline{\boldsymbol{u}}(\Omega)$
- Optimal BF gain $|w(\Omega)^T v_0(\Omega)|^2 = |A_E(\Omega)|^2 M$ = peak element gain × peak array gain

• Array factor is
$$AF(\Omega, \Omega_0) = |\boldsymbol{w}(\Omega_0)^T \boldsymbol{v}_0(\Omega)|^2 = \frac{1}{M} |A_E(\Omega)|^2 |\boldsymbol{u}^*(\Omega_0) \boldsymbol{u}(\Omega)|^2$$

Impedance and Resistance Matrices

To model mutual coupling, we need some simple network theory

The input to an array can be modeled as an *N* port network

- $\,\circ\,$ Each "port" has an input current I_n and voltage V_n
- Physically, the port would be the antenna feed
- $^{\circ}\,$ The currents and voltages are represented in complex baseband

Any N port network is characterized by an $N \times N$ impedance matrix ZV = ZI

- *I* and *V* are the vector of currents and voltages
- The impedance matrix accounts for coupling between ports

The real power consumed in the network is

$$P = \frac{1}{2}Real(\mathbf{I}^*\mathbf{V}) = \frac{1}{2}Real(\mathbf{I}^*\mathbf{Z}\mathbf{I}) = \frac{1}{2}\mathbf{I}^*\mathbf{R}\mathbf{I}$$

• $\mathbf{R} = \frac{1}{2}(\mathbf{Z} + \mathbf{Z}^*)$ =Hermitian part of Z. Called the resistance matrix

Normalized Steering Vector

To account for coupling between antennas, define the normalized spatial signature

$$\boldsymbol{v}(\Omega) = \boldsymbol{Q}^{-1/2} A_E(\Omega) \boldsymbol{u}(\Omega), \qquad \boldsymbol{Q} = \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} |A_E(\Omega)|^2 \, \boldsymbol{u}(\Omega) \boldsymbol{u}^*(\Omega) \cos\theta \, d\theta d\phi$$

• $v(\Omega)$ is a scaled version of the spatial signature with pattern multiplication $v_0(\Omega)$

• Q is called the normalization matrix, $Q^{-1/2} =$ inverse of the matrix square root

Theorem: The TX channel in free space is $h = g_0 v^T(\Omega)$

- $^{\circ}\,$ Recall, g_{0} is the free space channel from the reference point in the array
- Proved below using network theory

Conclusion: $v(\Omega)$ represents the array response

Properly accounts for coupling between elements

Normalized Channel Response

Theorem: There exists a constant C > 0 such that if $s = \sqrt{C} \overline{Q}^{1/2} I$:

- $^{\circ}\,$ The total transmitted power is $\|m{s}\|^2$
- The received signal at a point in free space is $r = g_0 v^T(\Omega) s$ where g_0 is the free space SISO channel
- Received power is $|r|^2 = |g_0|^2 |\boldsymbol{v}^T(\Omega)\boldsymbol{s}|^2$

□ Proof: Will be done in several slides below

Conclusion: $v(\Omega)$ represents the effective array response

- Properly accounts for coupling between elements
- Based on a transformation of the signals to array

Numerical Procedure for Normalization

Get angles $\Omega_k = (\theta_k, \phi_k), k = 1, ..., K$ uniformly in $\theta_k \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \phi_k \in \left[-\pi, \pi\right]$

Get steering vectors $\boldsymbol{u}(\Omega_k)$ and element gain $A_E(\Omega_k)$ at each angle

Compute normalization matrix:

$$\boldsymbol{Q} = \frac{1}{cK} \sum_{k=1}^{K} \cos \theta_k |A_E(\Omega_k)|^2 \boldsymbol{u}(\Omega_k) \boldsymbol{u}^*(\Omega_k), \qquad c = \frac{1}{K} \sum_{k=1}^{K} \cos \theta_k$$

• Scale factor *c* used to normalize the summation

The normalized steering vector at any new angle Ω is $\boldsymbol{v}(\Omega) = A_E(\Omega)\boldsymbol{Q}^{-1/2}\boldsymbol{u}(\Omega)$

The complex gain with beamforming vector \boldsymbol{w} is $\boldsymbol{w}^T \boldsymbol{v}(\Omega)$

• Power gain
$$G = |\boldsymbol{w}^T \boldsymbol{v}(\Omega)|^2$$

Array Element Example

Element:

- Patch Microstrip
- Max gain 10 dBi gain

Array: 4x4 URA

- $^\circ~$ Max gain = $10\log_{10}16 = 12~\text{dBi}$
- Has directivity in back and front

Array Factor Examples

□ For each target angle:

- Find optimal BF vector
- Compute resulting array factor

Array factor computed for

- No normalization (approximate)
- Normalization
- □ We see approximation is close
 - But overestimates peak gain

Target angle $(\theta,\phi) = (0,0)$

No normalization

Normalization

0

100

-100

0

50

10

5

0 -5

-10

 $(\theta, \phi) = (30, 45)$

Max Gain

Plotted:

• Max gain in each angle

□With no normalization:

 $^{\circ}$ Max gain at boresight= 12 + 10.1 = 22.1 dBi

□With normalization:

- Max gain at boresight= 18.3 dBi
- Max gain at other angles more uniform

Proof Part 1: Analyzing in Current Domain

Let $I = [I_1, ..., I_N]^T$ = vector of complex baseband current inputs to the antennas

Consider electric field at angle $\Omega = (\phi, \theta)$ at far distance d

 \Box Assume the electric field from a single current I_n is:

$$E(\Omega) = \frac{c}{d} A_E(\Omega) u_n(\Omega) I_n$$

• c = some proportionality constant

We know super-position applies for currents

• This is a consequence of Maxwell's equations

 \Box Hence with all *N* currents:

$$E(\Omega) = \frac{c}{d} A_E(\Omega) \sum_{n=1}^{N} u_n(\Omega) I_n = \frac{c}{d} A_E(\Omega) \boldsymbol{u}(\Omega)^T \boldsymbol{u}(\Omega)^T \boldsymbol{u}(\Omega)$$

TX antenna n

Proof Part 2: Total Radiated Power

□From previous slide: Electric field is $E(\Omega) = \frac{c}{d} A_E(\Omega) \boldsymbol{u}^T(\Omega) \boldsymbol{I}$

Hence, power intensity is $U(\Omega) = \frac{d^2}{2\eta} |E(\Omega)|^2 = C |A_E(\Omega) \boldsymbol{u}^T(\Omega) \boldsymbol{I}|^2$ $\circ C = \frac{|c|^2}{2\eta}, \quad \eta = \text{characteristic impedance}$

□ Hence, the total radiated power is:

$$P_{tx} = \int U(\Omega) d\Omega = \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} U(\phi, \theta) \cos \theta \, d\theta d\phi = C I^* \overline{Q} I$$

 $\Box \text{Here } \boldsymbol{Q} = \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} |A_E(\Omega)|^2 \boldsymbol{u}(\Omega) \boldsymbol{u}^*(\Omega) \cos\theta \, d\theta d\phi$

 $\Box \overline{Q}$ =elementwise complex conjugate of Q

Proof Part 3: Array Resistance Matrix

From previous slide we saw that :

$$P_{tx} = C \boldsymbol{I}^* \overline{\boldsymbol{Q}} \boldsymbol{I}$$

 $\circ \ \overline{m{Q}}$ can be computed from the integral of spatial signatures

 \Box We know from network theory the power consumed is $\frac{1}{2}I^*RI$

• *R* = resistance matrix of the array

□ If the antennas are lossless, this power must be transmitted

 $\Box \text{Hence } P_{tx} = \frac{1}{2} I^* R I$

Conclusions:

- $^\circ\,$ The matrix $\overline{oldsymbol{Q}}$ is a scaled version of the antenna array resistance matrix
- $^{\circ}\,$ The matrix captures the coupling of currents and voltages between antennas

Proof Part 4: Computing the Channel

Up to now we have shown:

- Total transmitted power is $P_{tx} = C I^* \overline{Q} I$
- Radiation intensity at angle Ω is $U(\Omega) = C |A_E(\Omega) \boldsymbol{u}^T(\Omega) \boldsymbol{I}|^2$

Define:

- Power input vector: $s = \sqrt{C} \overline{Q}^{1/2} \mathbf{I}$
- Normalized steering vector: $\boldsymbol{v}(\Omega) = A_E(\Omega)\boldsymbol{Q}^{-1/2}\boldsymbol{u}(\Omega)$

□With these definitions:

- Total transmitted power is $P_{tx} = CI^*QI = ||s||^2$
- Radiation intensity at angle Ω is $U(\Omega) = C |A_E(\Omega) \boldsymbol{u}^T(\Omega) \boldsymbol{I}|^2 = |\boldsymbol{v}^T(\Omega) \boldsymbol{s}|^2$

 \Box Hence $|\boldsymbol{v}^T(\Omega)s|^2$ is the power gain relative to free space propagation

Therefore, channel can be modeled as $g_0 v^T(\Omega) s$ is the free space channel

