Unit 3. Multi-Path Fading

ECE-GY 6023. WIRELESS COMMUNICATIONS

PROF. SUNDEEP RANGAN

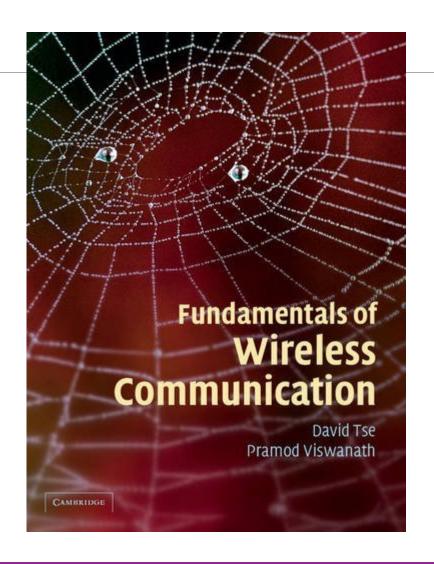
Fading

From the Introduction of a classic text:

There are two fundamental aspects of wireless communication that make the problem challenging and interesting.

...First is the phenomenon of fading ...

...Second ...there is significant interference ...



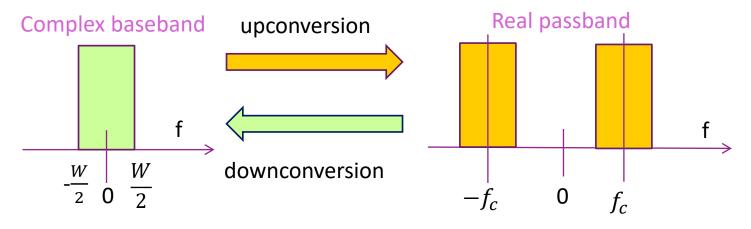
Learning Objectives

- ☐ Describe up and down-conversion in time- and frequency-domain
- ☐ Describe the steps in the DAC and ADC including the filtering
- □ Compute a discrete-time and continuous-time base equivalent channels from the passband
- ☐ Simulate fractional delays and gains in the sampled data
- ☐ Describe and simulate a deterministic multi-path wireless channel
- □ Compute the time-varying frequency response given the path parameters
- ☐ Describe a statistical model for multi-path fading
- □ Approximately compute the coherence time and bandwidth given a channel

Outline

- Review of Up- and Downconversion
 - ☐ Review of TX and RX Sampling
 - □ Doppler and Multi-Path Fading
 - ☐ Statistical Descriptions of Fading

Up- and Downconversion



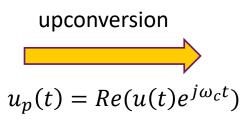
- □RF communication systems:
 - Information occurs and is processed in complex baseband
 - Transmitted and received in real passband
- □ Up and down-conversion: Shift center frequency of signals
- ☐ Also called mixing

Up and Down-Conversion in Time Domain

□Complex baseband:

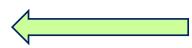
- Two real signals, $u_I(t)$, $u_O(t)$
- Or one complex signal:

$$u(t) = u_I(t) + ju_Q(t)$$



 \square Real passband: $u_p(t)$

downconversion



$$v(t) = 2u_p(t)e^{-j\omega_c t}$$

$$u(t) = h_{LPF}(t) * v(t)$$

$$u(t) = h_{LPF}(t) * v(t)$$

Note: downconversion needs:

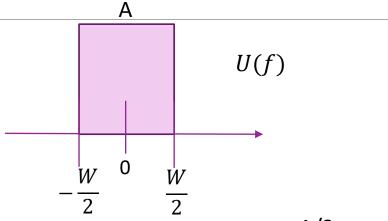
- Multiplication by 2
- Low pass filtering

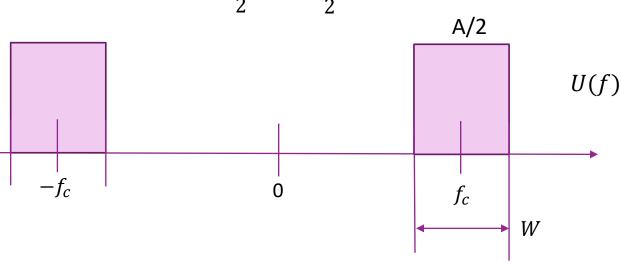
Mixing in Frequency Domain

☐Baseband signals

- Centered around f = 0, complex
- $\circ \frac{W}{2}$ = single sided bandwidth
- W = two sided bandwidth
- ∘ Band-limited to $|f| \le \frac{W}{2}$

- Centered around $f = f_c$, real
- W = bandwidth (per side or image)
- ∘ Band-limited to $|f f_c| \le \frac{W}{2}$





Discrete IQ Mixer

 \square LO = "local oscillator" = square or sine wave at f_c

 \square I1, I2 = I and Q inputs.

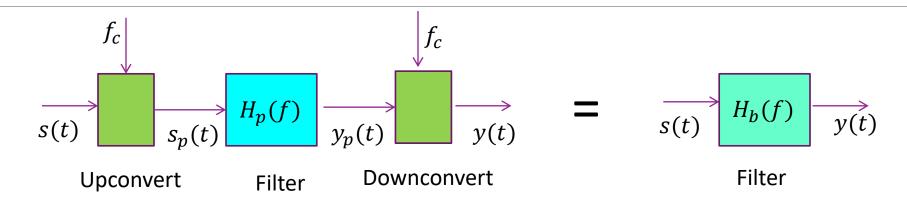
Generally, lowpass

 \square RF = passband output centered at f_c

http://www.markimicrowave.com/Mixers/IQ Quadrature-IF Double-Balanced/IQ-0318.aspx

Datashe et	RF [GHz]	LO [GHz]	IF [MHz]		Image Rejectio n [dB]	e	Phase Deviation [Degrees]	Isolations L-R [dB]	Isolations L-I [dB]
<u>IQ-0318</u>	3 to 18	3 to 18	DC to 500	7	22	0.75	10	40	20

Baseband Equivalent Channel



- ☐ Filtering at passband equivalent to complex baseband filter
- □ Assuming downconversion filter is ideal:

$$H_b(f) = H_p(f + f_c)$$
 for $|f| \le \frac{W}{2}$

• Simply shift $H_p(f)$ to the left by f_c .

Important Special Case: Delay

Passband channel

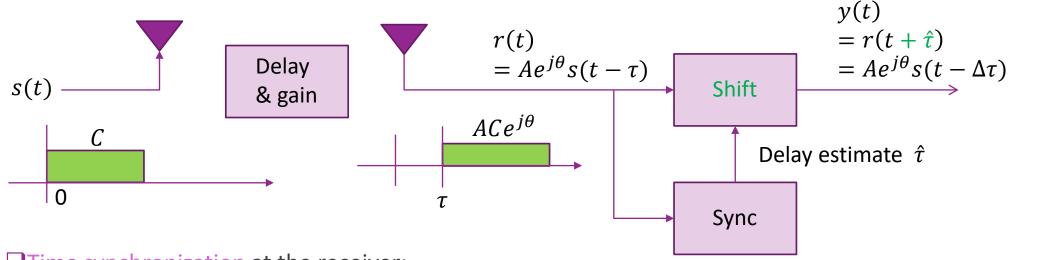
 $\tau = \text{delay}$

Baseband equivalent channel

 $\theta = 2\pi f_c \tau$ = phase rotation

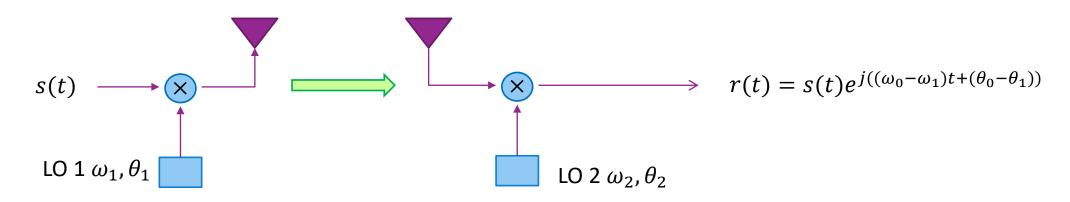
- □Delay, gain in passband ⇒ delay, gain and phase rotation in baseband
- ■Proof:
 - Passband frequency response is: $H_p(f) = Ae^{-2\pi jf\tau}$
 - Baseband frequency response: $H_b(f) = H_p(f + f_c) = Ae^{-2\pi j(f_c + f)\tau}$
 - Equivalent impulse response: $h_b(t) = Ae^{-2\pi j f_c \tau} \delta(t \tau)$

Synchronization and Delay Errors



- ☐ Time synchronization at the receiver:
 - $^{\circ}$ Estimate the arrival time of the signal $\hat{ au}$
 - \circ Starts processing remainder of signal starting at $\hat{ au}$
 - Equivalent to shifting received signal ahead in time by $\hat{\tau}$: $y(t) = r(t + \hat{\tau})$
 - \circ Remaining time error: $\Delta au = au \hat{ au}$
- ☐ Later, we will discuss:
 - How to estimate τ (synchronization) and how to correct for gain and phase error (equalization)

Frequency Errors



- □Oscillators at TX and RX always have some mismatch. To analyze, suppose:
 - Upconversion: $s_p(t) = Re(s(t)e^{j\omega_1t+\theta_1})$,
 - Downcoversion: $r(t) = LPF(2s_p(t)e^{-(j\omega_2t+\theta_2)})$
- \Box LO error leads to time-varying gain: $r(t) = g(t)s(t), \quad g(t) = e^{j((\omega_0 \omega_1)t + (\theta_0 \theta_1))}$
 - Frequency and phase shift

In-Class Problems

Problem 1: Plotting a Frequency Response of a Delay Channel

Consider a system with the following parameters

```
bw = 20e6;  % bandwdith
pl = 80;  % path loss (dB)
tau = 200e-9;  % timing error
```

Plot the real component of the frequency response at 1024 points over the bandwidth. Assume phase = 0 at DC. Use 1024 frequency points

Problem 2: Plotting the Channel Response from Frequency Error

Suppose a link has the following parameters:

```
fc = 37e9; % carrier freq
loppm = 1; % LO error in ppm
```

Plot the relative change of the gain:

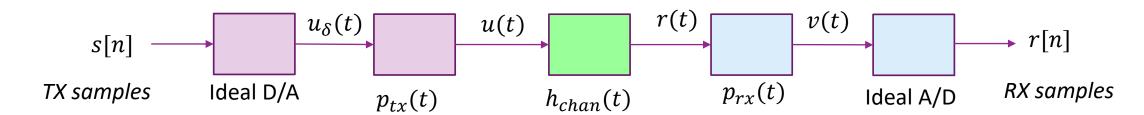
```
E(t) = |g(t)-g(t+tau)|^2 / |g(t)|^2
```

as a function of tau from 0 to 5 us.

Outline

- ☐ Review of Up- and Downconversion
- Review of TX and RX Sampling
 - □ Doppler and Multi-Path Fading
 - ☐ Statistical Descriptions of Fading

Typical Digital Communication Path



- □All modern communication systems TX and RX digital samples
- □ Transmitter: DAC + filtering with $p_{tx}(t)$. Filtering used to:
 - Suppress out of band emissions
- \square Receiver: Filters with $p_{rx}(t)$ then performs ADC. Filtering plays two roles:
 - Reduces noise
 - Remove out-of-band signals before ADC. (i.e. Anti-aliasing)
- ☐ Filter design discussed in digital communications class

Review of DTFT

- \square Given discrete-time sequence s[n]
 - Real or complex
- \square Discrete-time Fourier Transform: $S(\Omega) = \sum_{n} s[n]e^{-j\Omega n}$
- $\Box \text{Inverse DTFT: } s[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\Omega) e^{j\Omega n} d\Omega$
- \square Note $S(\Omega)$ is always a 2π periodic signal
 - \circ Can take integral for inverse DTFT on any period of 2π
- $\square \Omega$ is the discrete frequency. Units is radians per sample.
- \square For finite length signals and finite number of Ω , can be computed via FFT
- ☐ Review in your signals and systems class

Common DTFT Pairs

Time domain	Frequency domain
$s[n]$ $\delta[n]$	$X_{2\pi}(\omega)$ $X_{2\pi}(\omega)=1$
$\delta[n-M]$	$X_{2\pi}(\omega)=e^{-i\omega M}$
	$X_{2\pi}(\omega) = \sum_{m=-\infty}^{\infty} e^{-i\omega Mm} = rac{2\pi}{M} \sum_{k=-\infty}^{\infty} \delta\left(\omega - rac{2\pi k}{M} ight)$
$\sum_{m=-\infty}^{\infty} \delta[n-Mm]$	$X_o(\omega) = rac{2\pi}{M} \sum_{k=-(M-1)/2}^{(M-1)/2} \delta\left(\omega - rac{2\pi k}{M} ight) ext{ odd } M$
	$X_o(\omega) = rac{2\pi}{M} \sum_{k=-M/2+1}^{M/2} \delta\left(\omega - rac{2\pi k}{M} ight)$ even M
u[n]	$X_{2\pi}(\omega) = rac{1}{1-e^{-i\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
	$X_o(\omega) = rac{1}{1-e^{-i\omega}} + \pi \cdot \delta(\omega)$
$a^nu[n]$	$X_{2\pi}(\omega)=rac{1}{1-ae^{-i\omega}}$
	$X_{\scriptscriptstyle \mathcal{O}}(\omega) = 2\pi \cdot \delta(\omega + a), $ -π < a < π
e^{-ian}	$X_{2\pi}(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega + a - 2\pi k)$

☐See Wikipedia

$\cos(a\cdot n)$	$egin{aligned} X_o(\omega) &= \pi \left[\delta \left(\omega - a ight) + \delta \left(\omega + a ight) ight], \ X_{2\pi}(\omega) \ & ext{$igsim} \sum_{k=-\infty}^{\infty} X_o(\omega - 2\pi k) \end{aligned}$
$\sin(a\cdot n)$	$X_o(\omega) = rac{\pi}{i} \left[\delta \left(\omega - a ight) - \delta \left(\omega + a ight) ight]$
$\mathrm{rect}\left[\frac{n-M/2}{M}\right]$	$X_o(\omega) = rac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-rac{i\omega M}{2}}$
$\mathrm{sinc}(W(n+a))$	$X_o(\omega) = rac{1}{W} \operatorname{rect}\Bigl(rac{\omega}{2\pi W}\Bigr) e^{ia\omega}$
$\mathrm{sinc}^2(Wn)$	$X_o(\omega) = rac{1}{W} \operatorname{tri} \Bigl(rac{\omega}{2\pi W}\Bigr)$

Discrete-Time Systems

$$s[n] \longrightarrow H(\Omega) \longrightarrow r[n]$$

- □ Consider discrete-time LTI system
- \square Time-domain: Characterized by impulse response h[n]

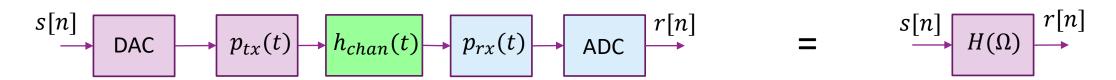
$$r[n] = h[n] * s[n] = \sum_{k} h[k]s[n-k]$$

 \square Frequency-domain: Characterized by frequency response $H(\Omega)$

$$R(\Omega) = H(\Omega)S(\Omega)$$

$$R(\Omega) = \sum r[n]e^{-j\Omega n}, \ r[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} R(\Omega)e^{j\Omega n} d\Omega$$

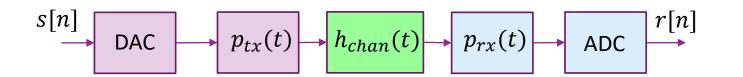
DT Equivalent Channel



- □ Discrete-time baseband equivalent channel:
 - Describes equivalent mapping from s[n] to r[n]
 - Includes effects of TX and RX filtering and continuous-time baseband channel
- ■Band-limited filters:
 - Suppose one of P_{rx} , P_{tx} is bandlimited to $|f| < \frac{1}{2T}$ (no out-of-band emissions or aliasing)
 - Then, discrete-time equivalent channel reduces to:

$$H(\Omega) = \frac{1}{T} P_{rx} \left(\frac{\Omega}{2\pi T} \right) P_{tx} \left(\frac{\Omega}{2\pi T} \right) H_{chan} \left(\frac{\Omega}{2\pi T} \right)$$
 for $|\Omega| < \pi$

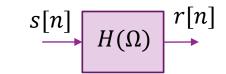
Ideal Filtering

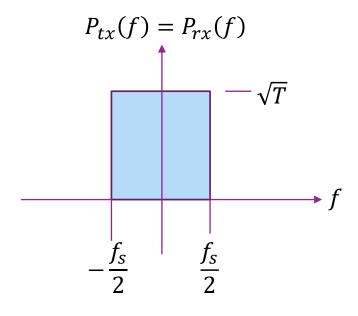


- $\Box \text{Suppose sample rate } f_S = \frac{1}{T}$
- ☐ "Ideal" TX and RX filter:

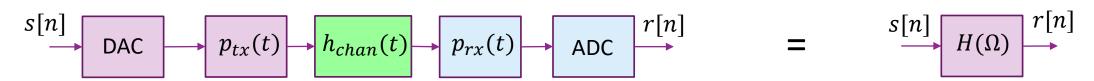
$$p_{tx}(t) = p_{rx}(t) = \frac{1}{\sqrt{T}} \operatorname{Sinc}\left(\frac{t}{T}\right)$$

- In frequency domain: $P_{rx}(f) = P_{tx}(f) = \sqrt{T} \operatorname{Rect}(fT)$
- Also called "brick wall" filter
- ☐ Most practical filters match this well
 - Up to gain and delay





Ideal Filtering



- ☐ Assume TX and RX filters are ideal
- ☐ Theorem: DT equivalent channel is the re-scaled continuous-time channel

$$H(\Omega) = H_{chan} \left(\frac{\Omega}{2\pi T} \right)$$

• Frequency f mapped to $\Omega = 2\pi T f$

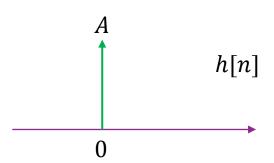
Special Case: Delay

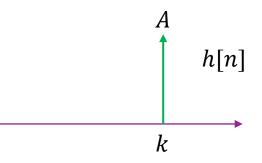
	Passband	Continuous-Time Baseband	Discrete-Time Baseband
Impulse response	$h_p(t) = A\delta(t - \tau)$	$h_{chan}(t) = Ae^{-j\omega_c\tau}\delta(t-\tau)$	$h[n] = Ae^{-j\omega_c \tau} sinc\left(\frac{\tau n}{T}\right)$
Frequency response	$H_p(f) = Ae^{-j2\pi f\tau}$	$H_{chan}(f) = Ae^{-j\omega_c \tau} e^{-j2\pi f \tau}$	$H(\Omega) = Ae^{-j\omega_c\tau}e^{-j\Omega\tau/T}$

- □Suppose passband has a gain and delay.
- ☐ Then discrete-time frequency-domain: gain and linear phase rotation over frequency
 - \circ Rotates $2\pi \ \tau/T$ radians every period
- ☐ In discrete-time time-domain: gain, constant phase rotation and sinc filter with delay

Sinc Filter with Integer Delays

- □Suppose we have ideal filtering and passband has delay and gain
- \square From previous slide, r[n] = h[n] * s[n], $h[n] = Ae^{-j\omega_c\tau} sinc\left(\frac{\tau n}{T}\right)$
- Special case 1: No delay $\tau = 0$:
 - $h[n] = A\delta[n] \Rightarrow r[n] = As[n]$
 - Baseband channel introduces only gain
- Special case 2: Integer delays $\tau = kT$:
 - $h[n] = A\delta[n-k] \Rightarrow r[n] = As[n-k]$
 - Baseband channel introduces gain and integer shift
- ■Ex: Suppose sample rate is 20 MHz and signal is delayed by 400 ns.
 - Integer delay in discrete-time signal is $\frac{20}{0.4} = 50$ samples

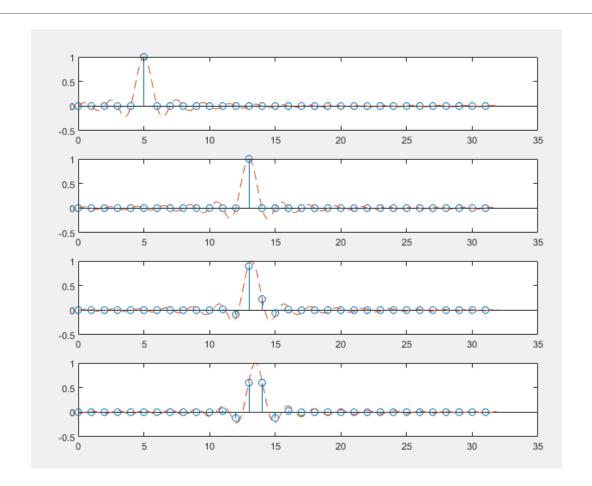




Sinc Pulses with Fractional Delay

$$\Box h[n] = Ae^{-j\omega_c \tau} sinc\left(\frac{\tau n}{T}\right)$$

- ☐ Causes blurring over multiple samples
- □Inter-symbol interference
- ☐Will need equalization to correct
 - More on this later



$$\tau = 5$$

$$\tau = 13$$

$$\tau = 13.2$$

$$\tau = 13.5$$

Simulating Fractional Delays in MATLAB

□Code on previous slide was create with DSP toolbox

```
tau = [0,8,8.2,8.5]; % Delays in fractions of a sample
% Create a fractional delay object from the DSP toolbox
% We select the Farrow interpolation, which is a fast
% and accurate method. It is important to select the options
% correctly
dly = dsp.VariableFractionalDelay(...
    'InterpolationMethod', 'Farrow','FilterLength',8,...
'FarrowSmallDelayAction','Use off-centered kernel');
```

```
% Create delays of the sequence
y = dly.step(x,tau);
```

Creates T x D matrix Row i is delayed by $\tau(i)$

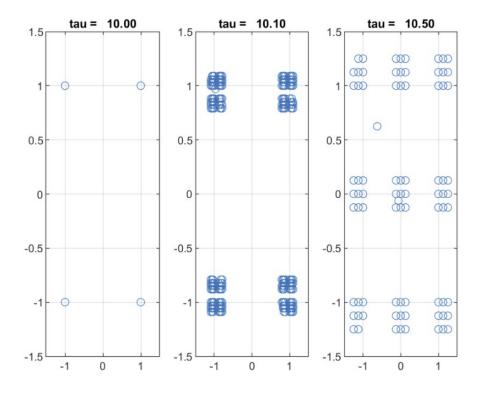
In-Class Problem: Fractional Delays on Constellations

Problem 3: Effect of Delay on a QAM Constellation

In this problem, we will show the effect of fractional delays on a TX constellation.

First, we generate random QPSK symbols.

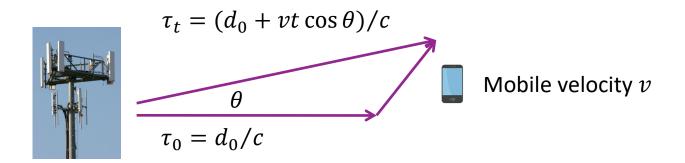
```
% TODO: Generate nb=1024 bits using the randi command.
% bits = ...
nb = 1024;
bits = randi(2,nb,1)-1;
```



Outline

- ☐ Review of Up- and Downconversion
- ☐ Review of TX and RX Sampling
- Doppler and Multi-Path Fading
 - ☐ Statistical Descriptions of Fading

Receiver with Local Motion



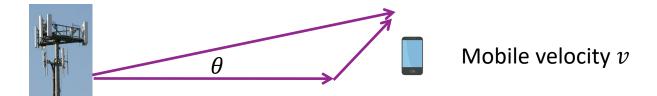
- □With the RX in motion, the propagation delay changes with time.
- ☐ In complex baseband signal:

$$r(t) = \alpha e^{-j\omega_c \tau(t)} u(t - \tau_t) = \alpha e^{j2\pi \left(-\frac{tv}{c}\cos\theta - d_0 f_c\right)} u(t - \tau_t)$$

- \square Local motion assumption: $u(t \tau_t) \approx u(t \tau_0)$ for t small
 - Effect of the change in propagation delay is only in the complex exponential

Then:
$$r(t) = \alpha e^{j2\pi \left(-\frac{tv}{c}\cos\theta - d_0 f_c\right)} u(t - \tau_0)$$

Doppler Shift



☐ Single path with local motion:

$$r(t) = g_0 e^{j2\pi f_d t} u(t - \tau_0)$$

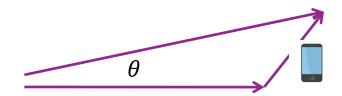
Complex gain: $g_0 = \alpha e^{-2\pi j \tau_0 f_c}$

• Doppler shift: $f_d = -\frac{vf_c \cos \theta}{c}$

 \circ Delay: au_0

☐ For a single path: Local motion causes a phase rotation, but no change in amplitude

Example: Computing Doppler Shift



$$v$$
=100 km/h

- □ Suppose: carrier frequency is f_c = 2.1GHz Car moves towards a base station at 100 km/h.
- ☐What is the Doppler shift?
- □ Answer: v = 100km/h= 27.7 m/s, c= $3(10)^8$ m/s, $\theta = 180$:

$$\Delta f = -\frac{v f_c \cos \theta}{c} = -\frac{(27.7)(2.1)(10)^9(-1)}{3(10)^8} \approx 194 \text{ Hz}$$

 \square If the angle away from BS at $\theta = 45$:

$$\Delta f = \frac{v f_c \cos \theta}{c} = \frac{(27.7)(2.1)(10)^9 \cos(45)}{3(10)^8} \approx -138 \text{ Hz}$$

Multi-Path Models

- ☐ Most channel consists of many paths
 - Direct paths
 - Reflections, transmissions, diffraction, ...
 - LOS and NLOS paths
- Wideband time-domain baseband model:

$$r(t) = \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell} t} x(t - \tau_{\ell})$$

- $\circ g_{\ell}$: Complex path gain
- $\omega_\ell = -rac{2\pi v f_c}{c}\cos heta_\ell$: Doppler shift of path
- \circ τ_{ℓ} : Delay of the path

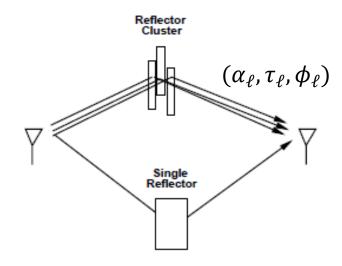


Figure 3.1: A Single Reflector and A Reflector Cluster.

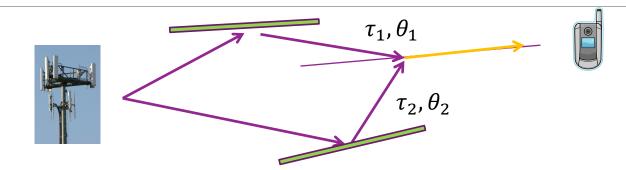
Time-Varying Frequency Response

- \square Multipath channel: $y(t) = \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell} t} x(t \tau_{\ell})$
- \Box Consider exponential input: $x(t) = e^{j\omega t}$
- Output is: $y(t) = H(t, \omega)x(t)$
- ☐Time-varying frequency response

$$H(t,\omega) = \sum_{\ell=1}^{L} g_{\ell} e^{j(\omega_{\ell}t - \omega\tau_{\ell})}$$

 \square May also write: $H(t,f) = H(t,2\pi f)$

Example with Two Paths



☐ To simplify understanding, consider two path model

$$r(t) = h_1 e^{j\omega_1 t} u(t - \tau_1) + h_2 e^{j\omega_2 t} u(t - \tau_2)$$

☐Time-varying response:

$$H(t,\omega) = h_1 e^{j(\omega_1 t - \omega \tau_1)} + h_2 e^{j(\omega_2 t - \omega \tau_2)}$$

☐Power gain:

$$P(t,\omega) = |H(t,\omega)|^2 = |h_1 e^{j(\omega_1 t - \omega \tau_1)} + h_2 e^{j(\omega_2 t - \omega \tau_2)}|^2$$

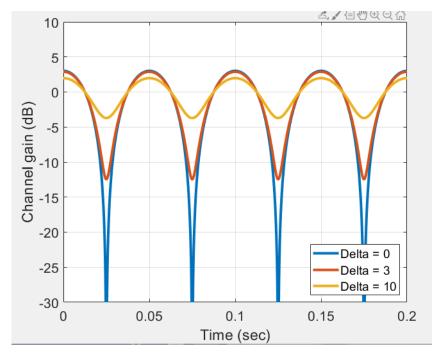
Variation in Time

$$P(t, \omega_0) = \left| h_1 e^{j(\omega_1 t + \phi_1)} + h_2 e^{j(\omega_2 t + \phi_2)} \right|^2$$

- Fixed frequency ω_0
- Look at time variations $P(t, \omega_0)$
- Rate of variation depends on Doppler spread:

$$\Delta f = f_{max}(\cos\theta_1 - \cos\theta_2)$$

- Size of variation depends on spread of gains:
 - Avg: $|h_1|^2 + |h_2|^2$
 - Min: $(|h_1| |h_2|)^2$: Destructive interference
 - Max: $(|h_1| + |h_2|)^2$:: Constructive interference
- With equal path gains, there are nulls



Plot shows
$$f_{\rm max}$$
 =10 Hz, $\theta_1=0, \theta_2=180,$ $h_2=10^{-0.05\Delta}h_2, \ |h_1|^2+|h_2|^2=1$

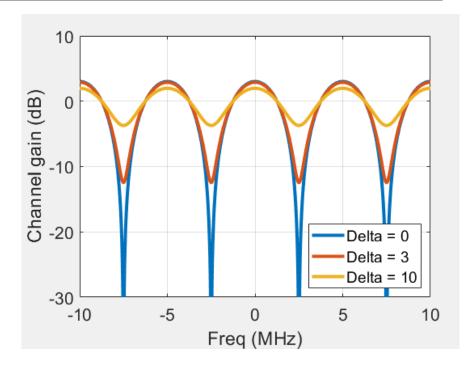
Variation in Frequency

$$P(t_0, \omega) = \left| h_1 e^{j(\omega \tau_1 + \phi_1)} + h_2 e^{j(\omega \tau_2 + \phi_2)} \right|^2$$

- Fixed frequency t_0
- Look at time variations $P(t, \omega_0)$
- Period of variation depends on delay spread:

$$\Delta f = \frac{1}{\tau_2 - \tau_1}$$

- Size of variation depends on spread of gains:
 - Avg: $|h_1|^2 + |h_2|^2$
 - Min: $(|h_1| |h_2|)^2$
 - Max: $(|h_1| + |h_2|)^2$

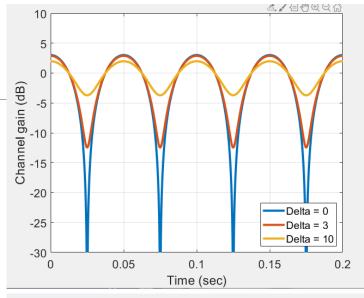


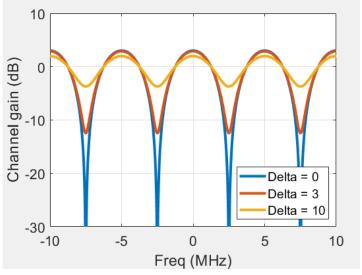
Plot shows

$$au_1 = 0, au_2 = 200 \text{ ns,} \\ h_2 = 10^{-0.05\Delta} h_2, \ |h_1|^2 + |h_2|^2 = 1$$

Fading

- Over time and frequency, paths can either
 - Constructively interfere ⇒ Peaks
 - Destructively interfere ⇒ Nulls
- Process is called fading
 - Intermittent channel quality
- One of the most significant challenges in wireless
- Later, we will discuss how to overcome fading



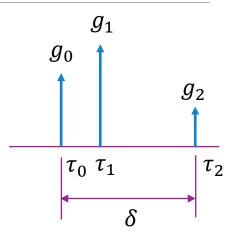


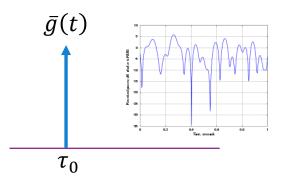
Narrowband Approximation

- \square Multi-path channel: $r(t) = \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell} t} x(t \tau_{\ell})$
- $\Box \text{Define delay spread: } \delta = \max_{\ell} |\tau_{\ell} \tau_{0}|$
 - Max path difference in seconds
- \square Narrowband approximation: X(f) is band-limited to $|f-f^0| \ll \frac{1}{2\delta}$ then

$$r(t) \approx H(t, f^0) x (t - \tau_0)$$

- Proof below
- Coherence bandwidth = $\frac{1}{2\delta}$
- \Box Effective single path gain: $\bar{g}(t) = H(t, f^0) = \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell}t j\omega^0 \tau_{\ell}}$:
 - Channel appears as a single path channel with time-varying gain
 - \circ Channel gain $ar{g}(t)$ is band-limited to max Doppler $\max_{\ell} \omega_{\ell}$

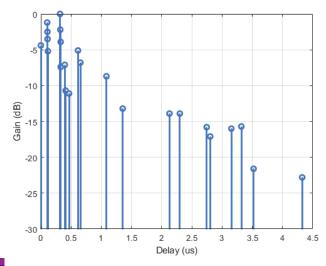




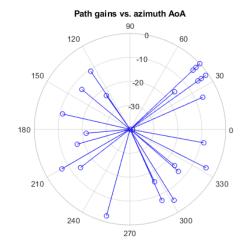
Example: 3GPP Cluster Delay Line Model

- □3GPP has several deterministic multi-path models
- ☐ Called Cluster-Delay Line (CDL)
- ☐ Can be downloaded in MATLAB 5G Toolbox
 - Gives the gain, delay and angles of each path
 - This ex: CDL-C with 24 paths

Path delay profile



Path AoA azimith profile



```
gain = chaninfo.AveragePathGains';
aoaAz = chaninfo.AnglesAoA';
aoaEl = 90-chaninfo.AnglesZoA';
dly = chaninfo.PathDelays';
```

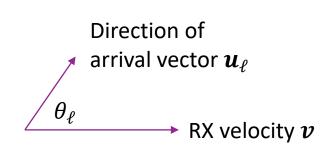

Computing the Doppler of Each Path

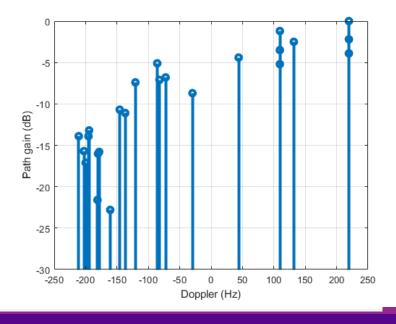
- □Computing the Doppler shift of each path
 - \circ Suppose that RX has velocity vector $oldsymbol{v} = (v_{\chi}, v_{\gamma}, v_{z})$
 - \circ Doppler shift of path ℓ is: $f_\ell = -\frac{f_c}{c} m{v}^T m{u}_\ell = -\frac{f_c}{c} \| m{v} \| \cos \theta_\ell$
- \square In this simulation: v = 30 m/s in x-axis

```
% UE velocity vector in m/s
ueVel = [30; 0; 0];

% Create a unit vectors in the direction of the path
[ux, uy, uz] = sph2cart(deg2rad(aoaAz), deg2rad(aoaEl), 1);
U = [ux uy uz];

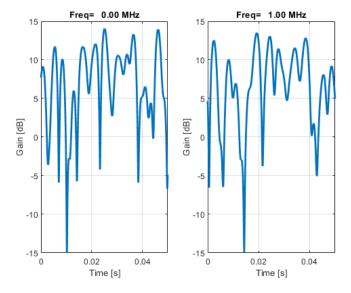
% Compute Doppler shift
vc = physconst('Lightspeed');
fd = -fc/vc*U*ueVel;
```





Computing the Narrowband Response

- \square Narrowband response $H(t, f^0) = \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell}t j\omega^0 \tau_{\ell}}$
- \square Plot at $f^0 = 0$ and 1 MHz
- \square Max Doppler $f_{dmax} \approx 200 \text{ Hz}$
 - See fast variation on order $\frac{1}{f_{dmax}} = 5 \text{ ms}$
- ☐ Can see deep fades

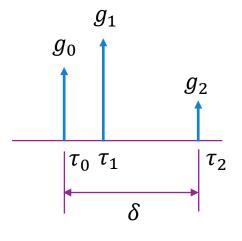


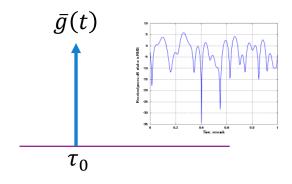
```
% Compute the fading gain over time
t = linspace(0,0.05,1000)';
npath = length(gain);
% Random initial phase on each path at freq = 0
phi0 = 2*pi*rand(npath,1);
% Number of frequencies to test
ftest = [0,1e6];
nfreq = length(ftest);
for i=1:nfrea
    % Initial phase
    phi = phi0 - 2*pi*ftest(i)*dly;
    % Gains on each path
    G = db2mag(gain).*exp(1i*(2*pi*fd*t' + phi));
    % Sum over paths
    g = sum(G,1).';
    % Get power gain
    gpow = 20*log10(abs(g));
    subplot(1,nfreq,i);
    plot(t, gpow, 'Linewidth', 2);
    grid on;
    xlabel('Time [s]');
    ylabel('Gain [dB]');
    title(sprintf('Freq=%7.2f MHz', ftest(i)/1e6));
    ylim([-15,15]);
    xlim([0,0.05]);
end
```


Narrowband Approximation Proof

- □ Want to show: If X(f) band-limited to $|f f^0| \ll \frac{1}{2\delta}$ then $r(t) \approx H(t, f^0)x(t \tau_0)$
- \square Prove this for $f^0 = 0$. Other frequencies are similar.
- \square Thus, X(f) is bandlimited to $|f| \le \frac{1}{2\delta}$.
- \square Therefore, $x(s_1) \approx x(s_2)$ for $|s_1 s_2| \le \delta$
- □In particular $x(t \tau_i) \approx x(t \tau_0)$ since $|\tau \tau_0| \le \delta$
- Hence:

$$\begin{split} r(t) &= \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell}t} x(t-\tau_{\ell}) \approx \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell}t} x(t-\tau_{0}) \\ &= H(t,0) x(t-\tau_{0}) \end{split}$$





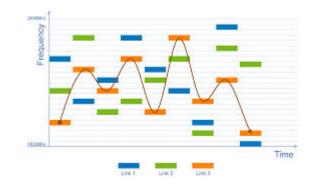
Examples: When is Narrowband Valid?

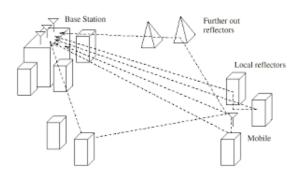
□Bluetooth

- Bluetooth hops over channels of bandwidth B = 1 MHz each.
- \circ Indoor delay spread typically $\ll 50$ ns
- Coherence bandwidth $\frac{1}{\delta} = \frac{1}{50} = 20 \text{ MHz} \gg \text{B}$
- Narrowband approximation valid

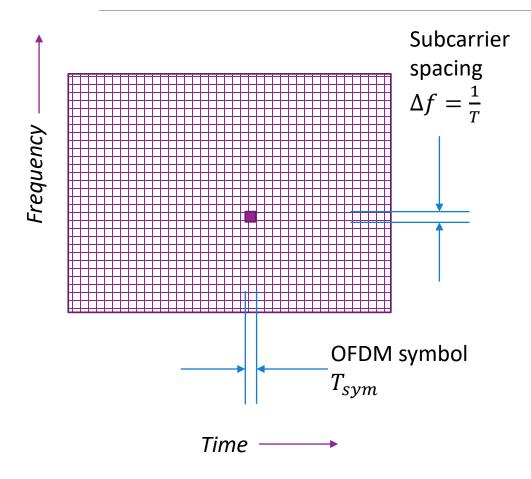
□LTE outdoor cellular system

- A typical channel is B = 20 MHz
- \circ Outdoor delay spread $\delta \approx 1~\mu s$
- Coherence bandwidth $\frac{1}{\delta} = \frac{1}{1} = 1$ MHz \ll B
- Narrowband approximation not valid





OFDM Time-Frequency Grid



- □OFDM modulation: Widely-used method
 - 4G and 5G cellular systems
 - Many 802.11 standards
- ☐ Divide channel into sub-carriers and OFDM symbols
 - Resource element: One time-frequency point
- \square Data is transmitted is an array: X[n, k]
 - $\cdot k =$ OFDM symbol index
 - \circ *n* = subcarrier index
 - One complex value per RE.
 - Called a modulation symbol
- ☐ See digital communication class
 - We will also review again when we discuss equalization

OFDM Channel with Fading

□OFDM channel acts as multiplication:

Under normal operation (delay spread is contained in CP):

$$Y[k,n] = H[k,n] \quad X[k,n]$$

RX symbols Channel TX symbols

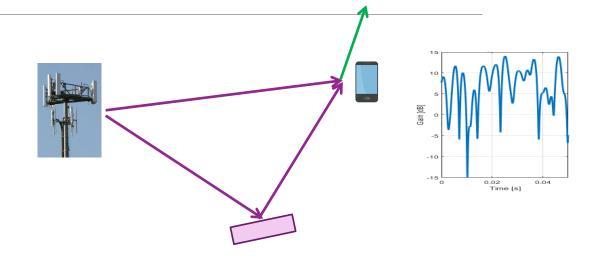
□OFDM channel gains can be computed from the multi-path components

$$H[k,n] = \sum_{\ell=1}^{L} \sqrt{E_{\ell}} e^{-2\pi j \left(Tkf_{\ell} + Sn\tau_{\ell} + \phi_{\ell}\right)}$$

- \circ T = OFDM symbol time, S = sub-carrier spacing
- \circ For each path: f_ℓ =Doppler shift, au_ℓ =Delay, ϕ_ℓ = phase of path, E_ℓ = path received energy

Summary

- ☐ Single path with no motion:
 - Delay and constant phase shift
- □ Local motion in single path causes Doppler
 - A time-varying phase rotation
 - But channel gain is constant
- ☐ Multiple paths causes fading
 - Constructive and destructive interference of paths
 - Variation in gain over time
- \square Described by a time-varying frequency response H(t, f)
 - Variations is time due to Doppler spread
 - Variations in frequency due to delay spread



In-Class Exercise: OFDM Channel Response

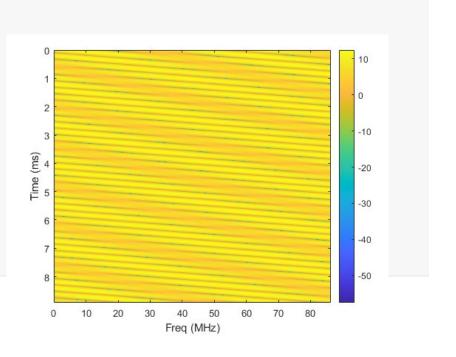
Problem 4: Computing an OFDM Frequency Response

Consider a system with the following parameters. These parameters are similar to common configuration for a 5G NR system used in the mmWave system

```
scs = 120e3; % sub-carrier spacing
nsc = 12*60; % number of sub-carriers
tsym = 1e-3/14/8; % OFDM symbol period
nsym = 1000; % number of symbols to plot

% Channel parameters
fc = 73e9; % carrier frequency
v = 10; % RX velocity in m/s
dly = [0,20,50]'*1e-9; % Delay in sec of the paths
theta = [0,pi/4,pi]'; % Path AoA relative to motion
gaindB = [0,-3,-5]'; % gain of each path in dB

% Random initial phase of the gains
npath = length(dly);
phi = rand(npath,1)*2*pi;
```

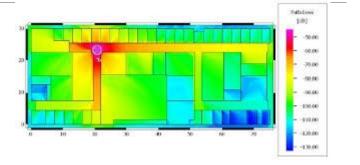


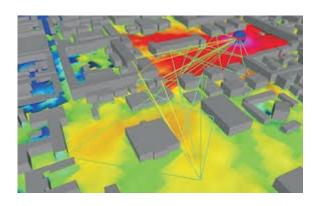
Outline

- ☐ Review of Up- and Downconversion
- ☐ Review of TX and RX Sampling
- □ Doppler and Multi-Path Fading
- Statistical Descriptions of Fading

Statistical Model

- ☐ Fading depends on the multipath distribution
- ☐ Multipath is site-specific
- ■Statistical model:
 - Describes a probability distribution of channels
 - Trained on an ensemble of channels in some environment
- ☐ Used in evaluation of communication system
- ☐ Example questions:
 - How well does a system do on average?
 - What is the *probability* that I will obtain sufficient coverage?





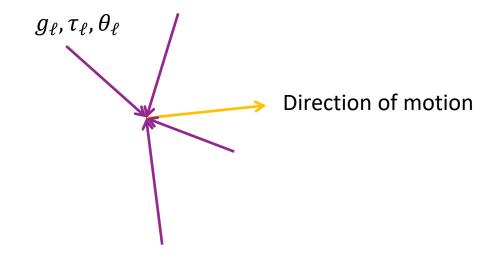
Random Path Statistical Model

- □RX signal has many random, independent paths
- ☐Time-varying frequency response:

$$h(t,f) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} g_{\ell} e^{2\pi i (t f_d \cos \theta_{\ell} + f \tau_{\ell})}$$

- Assume $(g_{\ell}, \tau_{\ell}, \theta_{\ell})$ i.i.d.
- Path gains: g_{ℓ} are zero mean and $\mathrm{E}|g_{\ell}|^2 = G_0$

- Follows from Central Limit Theorem
- Independent real and imaginary components
- \circ G_0 : Average power gain
- \circ Variance $G_0/2$ for real and imaginary components



Rayleigh Distribution

- \square Rayleigh fading: Channel response is $h(t, f) \sim CN(0, G_0)$
- \Box Let R = |h| magnitude
 - Represents amplitude gain
- ☐ Has Rayleigh distribution:

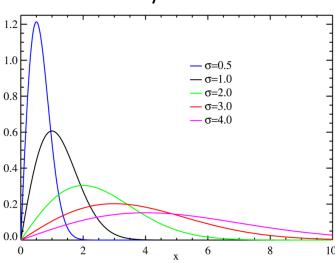
• PDF:
$$p(r) = \frac{2r}{p} e^{-r^2/P}$$

• CDF:
$$P(R \le r) = 1 - e^{-r^2/P}$$

• Mean:
$$E(R) = \sqrt{\frac{G_0 \pi}{2}}$$

• Second moment: $ER^2 = G_0$

Probability distribution



https://en.wikipedia.org/wiki/Rayleigh_distribution

Exponential Distribution

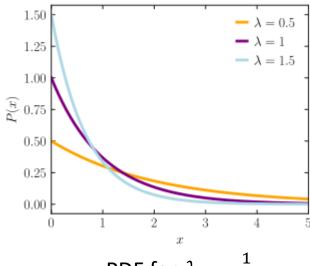
- \square Consider Rayleigh fading complex gain $h \sim CN(0, G_0)$
- \square Magnitude R = |h| is Rayleigh

$$P(R \ge r) = e^{-r^2/G_0}$$

 \square Instantaneous gain $G = |h|^2$ has exponential distribution

$$P(G \ge g) = P(R \ge \sqrt{g}) = e^{-g/G_0}$$

- Average gain is $E(G) = E|h|^2 = G_0$
- \square For channel, G represent power gain (in linear scale)



Example Calculation

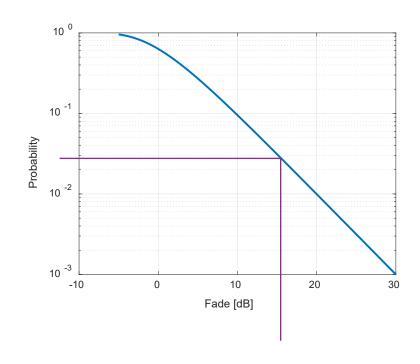
- ☐ Suppose the channel experiences Rayleigh fading.
- ■What is probability gain will be 15 dB below the average?
 - Called a 15 dB fade.

Answer:

- \circ Gain is 15 dB below average when $G \leq 10^{-0.1(15)}G_0$
- From exponential distribution:

$$P(G \le \beta G_0) = 1 - e^{-\beta G_0/G_0} = 1 - e^{-\beta}$$

- \circ For small β , $P(G \le \beta G_0) \approx \beta$
- \circ For 15 dB fade, $\beta = 10^{-0.1(15)} \approx 0.032$.



Doppler Spectra

□ Consider statistical model:

$$h(t,f) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} g_{\ell} e^{2\pi i (t f_d \cos \theta_{\ell} + f \tau_{\ell})}$$

- Paths are i.i.d. and g_ℓ are zero mean, $E|g_\ell|^2=G_0$
- ∘ Assume *L* is large
- \square For a given (t, f), complex gain $h(t, f) \sim CN(0, G_0)$
- \square As varies (t, f), h(t, f) is a Gaussian random process
- ■Auto-correlation:

$$R(\delta t, \delta f) = E[h(t, f)h^*(t + \delta t, f + \delta f)]$$

= $G_0 E\{e^{2\pi i(\delta t f_d \cos \theta_\ell + \delta f \tau_\ell)}\}$

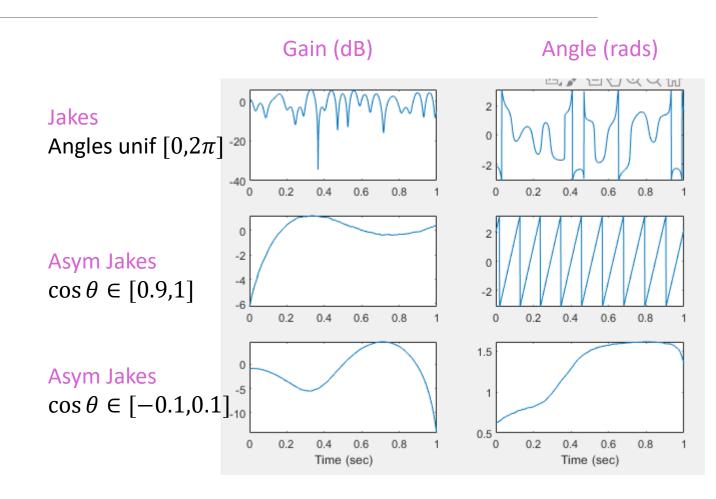
- Describes how correlated the process is over time and frequency
- \circ Depends on the distribution of angles $heta_\ell$ and delays au_ℓ

Jakes Model

 \square At a fixed frequency f_0 :

$$h(t, f_0) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} g_{\ell} e^{2\pi i (t f_d \cos \theta_{\ell} + f_0 \tau_{\ell})}$$
$$= \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} g'_{\ell} e^{2\pi i t f_d \cos \theta_{\ell}}$$

- ☐ Complex Gaussian process
- ☐Statistics depend on angular distribution
- □ Jakes model:
 - Angles uniform from $[0,2\pi]$
- ☐ Asymmetric Jakes:
 - $\theta \in [\theta_1, \theta_2]$ uniform
- ☐Angular spread:
 - Arises from diffuse reflection



Fading Models in MATLAB

- □ Comm Toolbox:
 - Efficient, general fading models
- ☐ Create a comm.RayleighChannel object
- ☐ Run the channel to get:
 - Output and gain

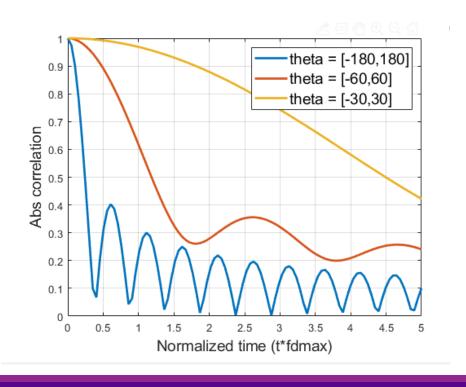
```
% Create Doppler models
 nmod = 3;
 dopMod = cell(nmod,1);
 dopMod{1} = doppler('Jakes');
 dopMod{2} = doppler('Asymmetric Jakes', [0.9 1]);
 dopMod{3} = doppler('Asymmetric Jakes', [-0.1 0.1]);
 % Simulate the channel gains for each model
for i = (1:nmod)
     chan = comm.RayleighChannel(...
         'SampleRate', fsym, 'AveragePathGains', 0, ...
         'MaximumDopplerShift', fdmax,...
         'DopplerSpectrum', dopMod{i}, ...
         'PathGainsOutputPort', true);
     [y, gain] = chan.step(x);
```


Auto-Correlation

 \square Fix a frequency f_0 and consider auto-correlation over time:

$$R(\delta t) = E[h(t, f_0)h^*(t + \delta t, f_0)] = G_0 E\{e^{2\pi i(\delta t f_d \cos \theta_\ell)}\}$$

- \circ Expectation is over angle $heta_\ell$
- \circ Depends on distribution of $heta_\ell$
- □ Plot: $R(\delta t)$ for θ uniform in $[-\theta_m, \theta_m]$
 - Computed numerically in MATLAB (see demo)
 - Plotted vs normalized delay $f_d \delta t$
 - \circ For $\theta_m=180^\circ\Rightarrow$ Jakes spectra
 - Uncorrelated at $\delta t \approx \frac{1}{2f_d}$
- ☐ As angular distribution is smaller:
 - Correlation is higher with delay
 - Highly directional channel vary slower

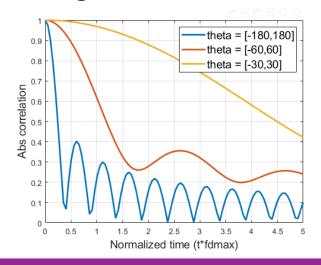


Computing Auto-Correlation Numerically

□ Correlation in previous slide

$$R(\delta t) = G_0 E\{e^{2\pi i(\delta t f_d \cos \theta_\ell)}\}$$

- \circ Expectation is over angle θ_{ℓ}
- ☐Generally, no analytic solution
- □Compute via numerical integration
 - See demo



```
% Function handle for the integrand
rfun = @(theta,tf) exp(1i*2*pi*cos(deg2rad(theta))*tf);
% Angle ranges to test
thetaMaxTest = [180, 60, 30];
ntheta = length(thetaMaxTest);
% Times to test:
t = linspace(0,5,100);
nt = length(t);
% Compute correlation for each angle range and time
Rcorr = zeros(nt, ntheta);
legStr = cell(ntheta,1);
for j = 1:ntheta
    thetam = thetaMaxTest(j);
    legStr{j} = sprintf('theta = [-%d,%d]', thetam, thetam);
    for i = 1:nt
        Z1 = integral(@(theta) rfun(theta,t(i)), -thetam, thetam);
        Rcorr(i,j) = abs(Z1/(2*thetam));
    end
end
plot(t, Rcorr, 'LineWidth', 2);
grid on:
xlabel('Normalized time (t*fdmax)', 'FontSize', 14);
ylabel('Abs correlation', 'FontSize', 14);
legend(legStr, 'FontSize', 14);
```

Coherence Time and Frequency

 \square Consider time varying frequency response H(t, f)

□Coherence time:

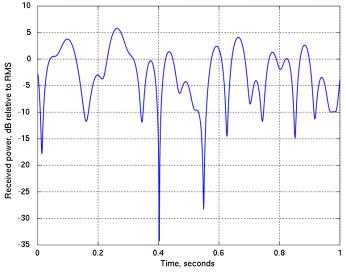
- Max interval Δt where $H(t, f) \approx H(t + \Delta t, f)$
- How fast channel changes in time
- Related to Doppler spread $\approx \frac{1}{f_{max} f_{min}}$

□ Coherence bandwidth

- Max interval Δf where $H(t, f) \approx H(t, f + + \Delta f)$
- How fast channel changes in frequency
- \circ Related to delay spread $pprox rac{1}{ au_{max} au_{min}}$

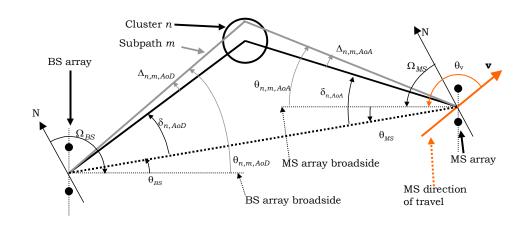
☐ Critical for many procedures:

- Channel estimation, tracking, coding, ARQ, ...
- More on this later



Realization of a Jakes process with $1/f_{max} = 0.1$ sec

Winner-3GPP-Spatial Cluster Model



From 3GPP SCM-132

- ☐ Paths arrive in clusters.
- □Clusters have subpaths (also called rays)
- Each cluster has:
 - Center angle and a statistical model for the delay and angular spread

Fading at Different Time Scales

R (dB)

Narrowband Fading

log(X_O)

Path Loss

O log (d/d)

Figure 3.8: Combined Path Loss, Shadowing, and Narrowband Fading.

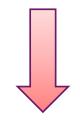
From Goldsmith, "Wireless Communications"

Three mechanisms for path loss variations

Distance-based path loss

Shadowing

Small-scale multi-path fading



Slower

Faster

Fading at Different Scales Models

Source of variation	Mathematical model	Typical spatial coherence	Typical temporal coherence
Small-scale fading from multi-path fading	Rayleigh or Rician distribution	~ 1 wavelength	15 ms (v=10m/s, fc=2GHz)
Large-scale fading from variations in shadowing	Lognormal distribution	10 to 100 m	1 to 10 sec
Path loss variations	Path loss exponent	100 m or larger	10 sec

- □ Different fading processes and variations occur at much different time / space scales
- ☐ Methods to combat these are different

