Unit 2. Non-LOS Propagation and Link Budget Analysis

EL-GY 6023: WIRELESS COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

Perform simple noise and interference calculations

Define key communication requirements

- BER, BLER, information rate, spectral efficiency, bandwidth
- SNR: Energy per bit and energy per symbol

Estimate rate based on simple models or from link curves

Perform simple link budget calculations

Qualitatively describe various propagation mechanisms in real world settings

Compute reflected power from the radar equation

Generate samples from a statistical path loss model

Compute rate and SNR distributions using a statistical path loss model

Outline

Noise, Interference and SNR

Communication Requirements and Link Budget Analysis

□Non-LOS Propagation

Statistical Models for Path Loss

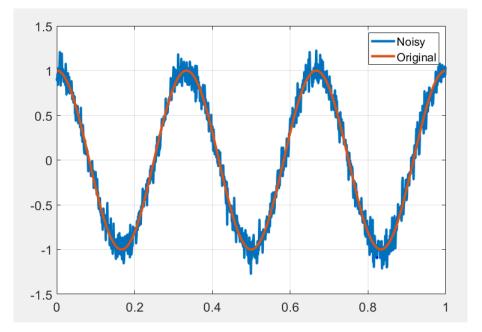
Demo: Estimating Rates with a 3GPP model

What is Noise?

Noise: Any unwanted component of the signal

□Key challenge in communication:

• Estimate the transmitted signal in the presence of noise



Types of "Noise"

Internal / thermal noise:

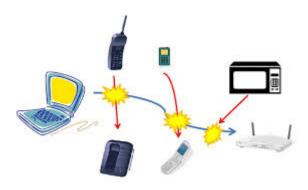
- From imperfections in the receiver
- Thermal noise: From random fluctuations of electrons

Distortions:

- Phase noise, quantization, channel estimation errors
- Not really noise, but sometimes modeled as noise

External Interference

- $\,\circ\,$ Signals from other sources
- In-band: Transmitters in the same frequency
 Ex: Multiple devices in a cellular band
- Out-of-band: From leakage out of carrier
- Some texts do not consider "interference" as noise

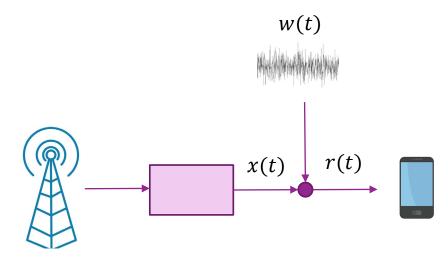


AWGN Noise Model

Thermal noise is often modeled as Additive White Gaussian:

$$r(t) = x(t) + w(t)$$

- x(t): Desired component
- w(t): Noise
- $\circ r(t)$: Total received signal
- □In real passband:
 - w(t) is a real Gaussian process with PSD $\frac{N_0}{2}$
- □In complex baseband:
 - $\circ w(t)$ is a complex Gaussian process with PSD N_0

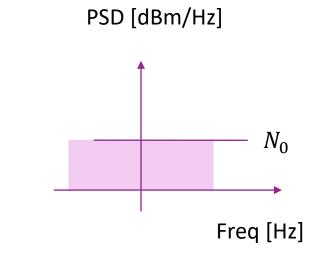


Thermal Noise Units

Units for noise PSD: $N_0 = W/Hz$ (in linear scale)

 \Box Also, N_0 = Joules

- Energy per degree of freedom
- Equivalently, energy in any orthogonal sample



Often written in dB scale:
$$N_0 = 10 \log_{10} \left(\frac{N_0}{1 \text{ mJ}} \right) \text{ [dBm/Hz]}$$

Limits and Noise Figure

□Fundamental limit determined by statistical physics: $N_0 = kT$

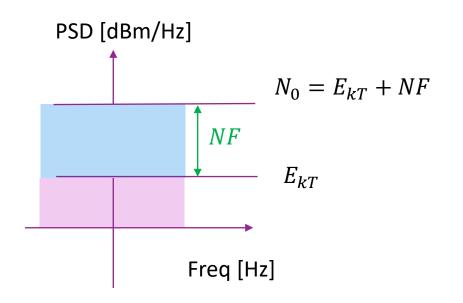
- k = Boltzman constant,
- $\circ T =$ Temperature in Kelvin
- At room temperature (T = 290K):

 $E_{kT} = 10 \log_{10}(kT) = -174 \text{ dBm/Hz}$

Practical systems see higher noise power

 $N_0 = 10 \log_{10}(kT) + NF (dBm/Hz)$

- Receiver imperfections
- NF = Noise figure
- Typical values are 2 to 9 dB in most wireless systems



Signal To Noise Ratio

Suppose: r(t) = x(t) + w(t)

• x(t) occupies bandwidth B with total RX power P_{rx}

• Hence, PSD of $x(t) = S_x = \frac{P_{rx}}{B}$

 $\circ w(t)$ has PSD N_0

□Signal-to-Noise Ratio:

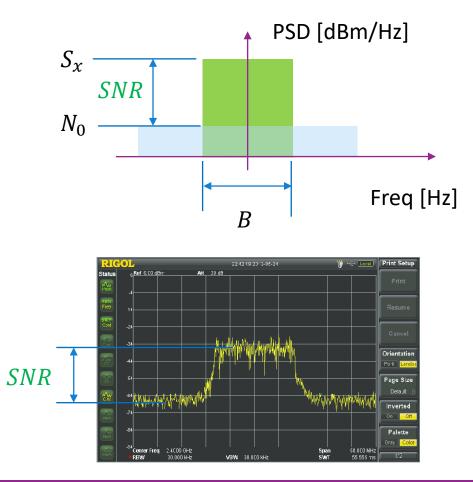
$$SNR = \frac{S_x}{N_0} = \frac{P_{rx}}{BN_0}$$

□Key performance metric:

• Determines possible spectral efficiency

Typically quoted in dB:

•
$$SNR [dB] = P_{rx}[dBm] - N_0[dBm/Hz] - 10 \log_{10}(B[Hz])$$



Example: SNR Calculation

- Suppose that:
 - RX power = -80 dBm
 - Noise figure = 6 dB
 - Bandwidth = 20 MHz

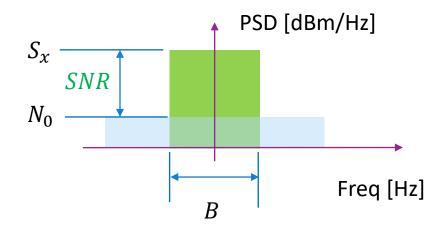
□What is the SNR?

Solution:

• Thermal noise: $N_0 = E_{kT} + NF$

•
$$SNR = P_{rx} - N_0 - 10 \log_{10}(B)$$

= $P_{rx} - E_{kT} - NF - 10 \log_{10}(B)$
= $-80 - (-174) - 6 - 10 \log_{10}(20(10)^6)$
= 15.0 dB



Sampled Data Systems

□ Most receiver process sampled signals

RX continuous-time complex baseband signal: $r_c(t) = x_c(t) + w_c(t)$

Assume typical digitally sampling model:

- Filtering: $v(t) = p_{rx}(t) * r_c(t)$
- Ideal sampler: r[n] = v(nT)

Then, in discrete-time:
 r[n] = x[n] + w[n]
 Signal component: x[n] = sampled from x_c(t)
 Noise component: w[n] = sampled from w_c(t)



SNR in Sampled Data Systems

Continuous-time: $r_c(t) = x_c(t) + w_c(t)$

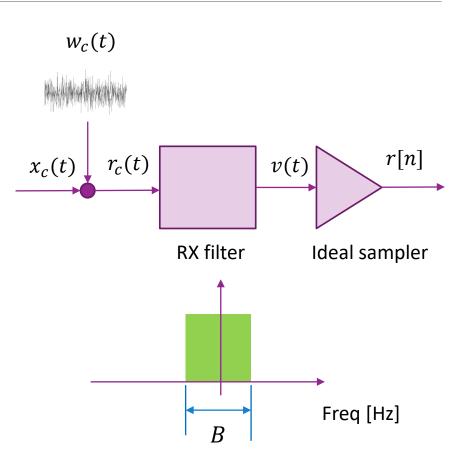
Assume an ideal low-pass filter:

- $p(t) = \frac{1}{\sqrt{T}} sinc\left(\frac{t}{T}\right)$
- Bandwidth $B = \frac{1}{T}$

□ If $r_c(t)$ is band-limited to $|f| \le \frac{B}{2}$ then: • Energy per sample is $E_s = P_{rx}T$

- □ If $w_c(t)$ is AWGN with PSD N_0 then: • $w[n] \sim CN(0, N_0)$
 - $\circ N_0 =$ noise energy per sample

Resulting SNR:
$$\frac{E_s}{N_0} = \frac{P_{rx}T}{N_0} = \frac{P_{rx}}{BN_0}$$



Simulating Noise in MATLAB

modRate = 4; % num bits per symbol (4=16 QAM)
M = 2^modRate; % QAM order
nsym = 1024; % num symbols

% Generate data

nbits = nsym*modRate; bits = randi([0,1],nbits,1); sym = qammod(bits,M,'InputType','bit','UnitAveragePower',true);

```
% Energy per sample in dBJ.
% Note we have to subtract 30 since MATLAB uses W not mW
Es = Prx - 30 - 10*log10(fsamp);
```

```
% Rescale signal
s = 10.^(0.05*Es)*sym / sqrt(mean(abs(sym).^2));
```

```
% Create a thermal noise object
tn = comm.ThermalNoise('NoiseMethod', 'Noise figure', ...
'NoiseFigure', NF, 'Add290KAntennaNoise', true);
```

```
% Add the noise
r = tn.step(s);
```

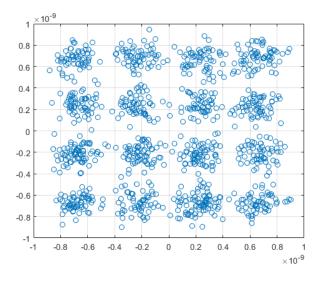
```
% Plot the constellation
plot(real(r), imag(r), 'o');
grid();
```

Simulating noise is easy in MATLAB

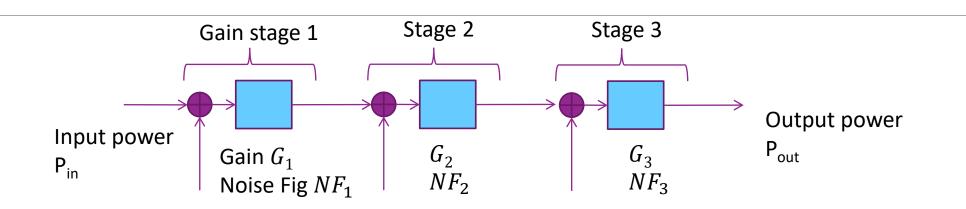
13

Example in demo:

- Generate 16-QAM symbols
- $^\circ~$ Scale for the RX power
- Add thermal noise



Cascade of Elements



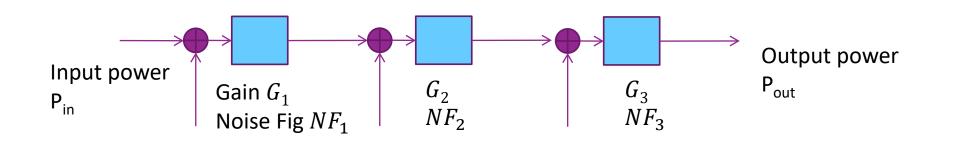
□ Most receivers are built with multiple stages

• Ex: LNA, Mixer, ...

Each stage has a gain and noise figure

Some stages (typically amplifiers) add noise with a noise figure

NF for Cascade of Elements



15

□Total gain and noise figure:

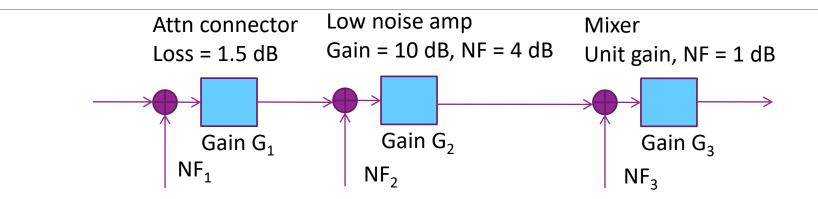
$$G_{tot} = G_1 G_2 G_3, \qquad NF_{tot} = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1 G_2}$$

• NF formula arises since each stage adds $(NF_i - 1)kT$ noise

Consequence: Most designs start with a low noise amplifier (LNA)

- $^\circ\,$ Has low noise figure NF_1 and high gain G_1
- Suppresses noise figure of later stages NF_2 , NF_3 , ...

Example Problem Molisch 3.1



□What is total NF and gain?

Answer: Compute G and NF (in linear units) for each stage:

• Attenuator: $NF_1 = 1$, [Does not add noise], $G_1 = 10^{-0.1(1.5)} = 0.707$ [Note sign]

• LNA:
$$NF_2 = 10^{0.1(4)} = 2.51$$
, $G_2 = 10^{0.1(10)} = 10$

- Mixer: $NF_3 = 10^{0.1(1)} = 1.25$, $G_3 = 1$ (unit gain)
- Total gain: G = -1.5 + 10 + 0 = 8.5 dB

• Noise figure
$$NF_{tot} = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1 G_2} = 1 + \frac{2.51 - 1}{0.707} + \frac{1.25 - 1}{(0.707)(10)} = 3.15 \approx 5.0 \text{ dB}$$

Interference

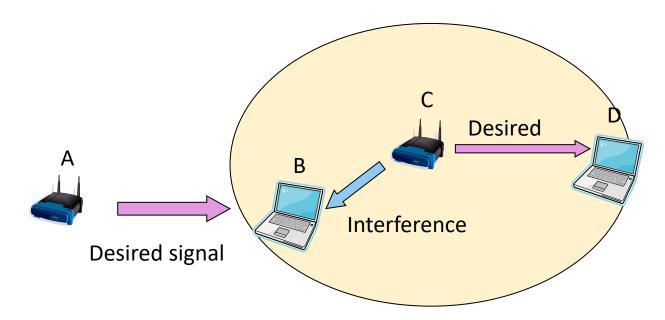
□Signals from other transmitters using same band and same time.

□Fundamental to the broadcast nature of the wireless medium.

Adds to total noise seen at receiver

Example:

- A transmits to B (desired signal)
- C transmits to D (desired signal)
- But B gets interference from A



Interference Calculations

Remember: Noise and interference powers add in linear scale (not in dB)!

Example:

- NF = 4 dB, B = 20 MHz
- Interference power = -95 dBm, RX signal power = -80 dBm
- Find the SNR=signal to noise and SINR = signal to interference + noise

Solution:

- $^{\circ}$ Thermal noise density $N_0 = -174 + 4 = -170 \text{ dBm/Hz}$
- Noise power $P_N = N_0 B$. In dBm: $P_N = -170 + 10 \log_{10}(2(10)^7) = -97 \text{ dBm}$
- SNR = −80 − (−97) = 17 dB
- Noise + interference power, $P_{NI} = 10^{-9.7} + 10^{-9.5} = 5.2(10)^{-9} = -92.9 \text{ dBm}$
- $^{\circ}$ Note: You add in linear scale first before converting to dB!!
- ∘ SINR = -80 (-92.9) = 12.9 dB

In-Class Problem

Cascade of two elements

- \circ LNA
- Mixer

Simulation:

- Transmit symbols
- Add noise in each stage
- Measure resulting SNR

Problem 1: Adding Noise and Measuring SNR

In this problem, we will simulate a simple cascade of two receiver elements:

- An LNA with gain GLna and noise figure NFLna
- A mixer with unity gain and noise figure NFmix

The received signal has power Prx and bandwidth B.

```
Prx = -80; % RX power in dBm
NFLna = 6; % Noise figure in the LNA in dB
GLna = 15; % LNA gain in dB
NFmix = 13; % mixer noise figure
B = 18e6; % Bandwidth in Hz
```

Compute and print the effective noise figure.

% TODO % NFeff = ...

Outline

□Noise and Interference

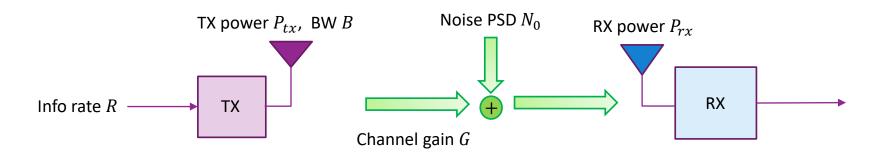
Communication Requirements and Link Budget Analysis

□Non-LOS Propagation

Statistical Models for Path Loss

Demo: Estimating Rates with a 3GPP model

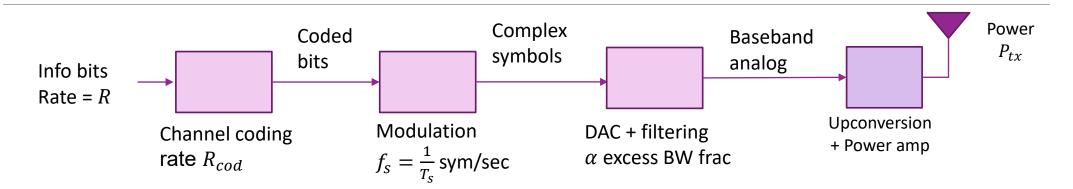
Communication Requirements



□ Basic tradeoff in all communication systems:

- Information rate: Amount of information we try to send
- Bandwidth: Spectrum the signal occupies
- Reliability: The probability it is received correctly
- Channel quality: Typically measured by the signal to noise ratio

Review: Typical Transmitter Steps

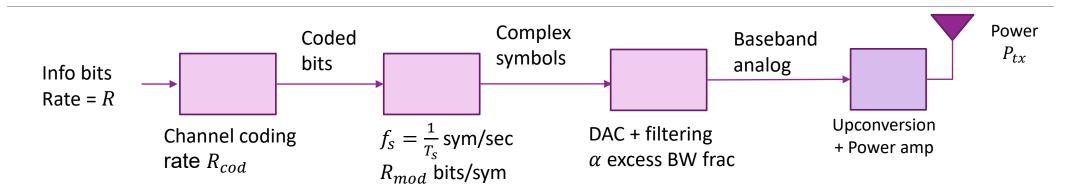


Communication systems typically use four stages

- Channel coding: ex. Convolutional, turbo, LDPC
- Modulation: QPSK, 16-QAM, 64-QAM, ...
- Pulse shaping or transmit filtering
- Upconversion

Determines modulation + coding scheme (MCS)

Information Rate and Bandwidth



23

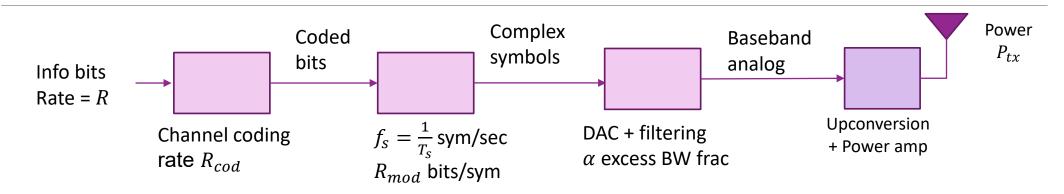
 $\Box Information rate: R = R_{cod}R_{mod}f_s \text{ [bits/sec]}$

Signal bandwidth: f_s [Hz]

Occupied bandwidth: $B = (1 + \alpha)f_s$ [Hz]

Spectral efficiency $\frac{R}{R}$ (Units are bps/Hz or bits/DOF)

Example Calculation



24

Ex: A system transmits with rate ½ coding, 16-QAM, 10 Msym/s and excess BW 10%

- The modulation and code rate are $R_{cod} = \frac{1}{2}$; $R_{mod} = 4$ (16-QAM)
- $^{\circ}$ Sample rate $f_s = 10$ Msym/s
- $^\circ\,$ Excess bandwidth lpha=0.1
- Hence information rate is $R = R_{cod}R_{mod}f_s = (0.5)(4)(10) = 20$ Mbps
- \circ Occupied bandwidth = $B = (1 + \alpha)f_s = (1.1)(10) = 11$ MHz

Reliability: BER and BLER

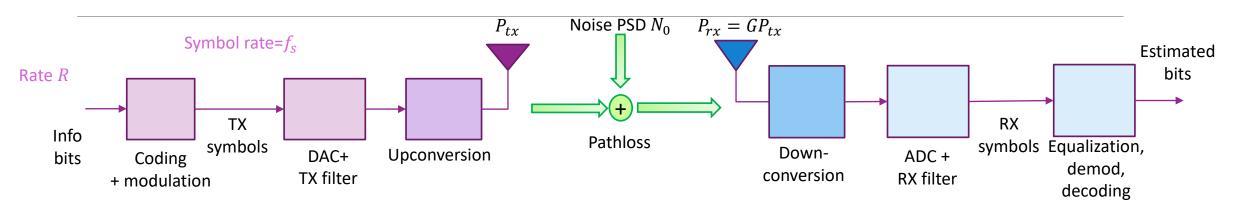
Most communication system TX data into blocks

- Framing may be used for coding, MAC layer transport blocks or IP layer
- Range in size from 100s to > 10000 bits per blocks

□ Measure reliability by either:

- BER: Bit error rate = fraction of bits in error (useful when there is no blocks)
- BLER: Block error rate = fraction of blocks that have at least one error
- Errors typically need to be corrected at some higher layer
 - Retransmissions / ARQ at MAC or transport layer (A lot more on this later!)
 - Corrected by application (e.g. voice masking in audio)
 - Acceptable level for BER and BLER depend on many MAC and application layer factors

SNR and Power Relations



Channel quality is measured by SNR = signal to noise ratio

• SNR per symbol:
$$\frac{E_s}{N_0} = \frac{P_{rx}T_s}{N_0}$$

• SNR per bit $\frac{E_b}{N_0} = \frac{P_{rx}}{N_0R}$ (pronounced "ebb-no")

Requirement will depend on the MCS used and the quality of the receiver

Example Problem

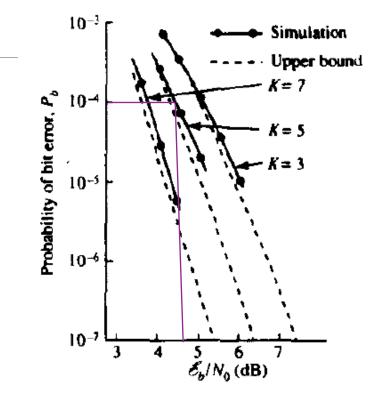
A system uses:

- Convolutional code shown (K = 5) and $R_{cod} = \frac{1}{2}$, 16-QAM
- Symbol rate $f_s = 100$ Msym/s. No excess bandwidth
- Transmit power: 23 dBm
- RX noise PSD: -170 dBm/Hz (including NF)

 \square For a BER of 10^{-4} find the maximum path loss

Solution:

- From graph we need $\gamma_b = \frac{E_b}{N_c} \approx 4.5 \text{ dB}$
- Information rate is $R = R_{cod}R_{mod}f_s = (0.5)(4)(100) = 200$ Mbps • $\gamma_b = \frac{E_b}{N_0} = \frac{P_{r\chi}}{N_0 f_s}$.
- In dB scale: $P_{rx} = \gamma_b + 10 \log_{10}(R) + N_0 = 4.5 + 3 + 80 170 = -82.5 \text{ dBm}$
- Hence, max path loss is $L = P_{tx} P_{rx} = 23 (-82.5) = 105.5 \text{ dB}$



From Proakis

Shannon Capacity

Capacity = max rate achievable given bandwidth and SNR

Rate optimized over all possible MCSs and communication schemes.

Given by classic Shannon formula

$$C = B \log_2(1 + \gamma), \qquad \gamma = SNR = \frac{P_{rx}}{N_0 B}$$

Capacity relates theoretical rate to two key parameters:

- B = bandwidth in Hz
- SNR in linear scale (not dB!!!)

$$\Box Max spectral efficiency \frac{C}{B} = max bps/Hz$$

□ Mathematical result from classic paper in 1948.

Bandwidth and Power-Limited Regions

1

Shannon formula:

$$C = B \log_2(1+\gamma) = B \log_2\left(1 + \frac{P_{rx}}{N_0 B}\right)$$

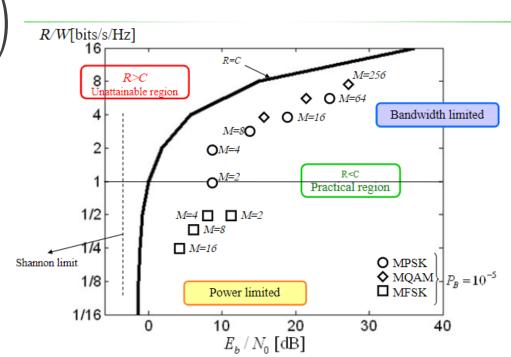
Power-Limited region:

• As $B \to \infty$, $C \to \log_2(e) \frac{P_{rx}}{N_0}$

• Rate linearly increases with power / SNR $\frac{P_{rx}}{N_0}$

Bandwidth-limited region:

- For large SNR, $C \approx B \log_2(\gamma)$
- Linearly increases in bandwidth,
- Logarithmically increase in SNR.
- Increasing SNR has little practical value



Actual Rate vs. Shannon Capacity

Theoretical Shannon capacity cannot be achieved
 Needs infinite computation and delay.

Practical modems achieve a rate below Shannon limit.

Useful model:

 $R = (1 - \Delta)B \log_2(1 + \beta \gamma)$

30

- $\circ \Delta$ =fraction overhead
- $\circ~\beta$ =loss factor, usually quoted in dB
- $\circ\,$ Often say "system is $\beta\,$ dB below capacity"
- $\gamma_{\rm eff} = \beta \gamma$ can be thought of as an "effective" SNR

Usually loss from capacity is at least 3dB

• Often higher depending on receiver complexity and other factors

Rate vs. Capacity Example

□What is the maximum rate for a system:

- 20% overhead, 10 MHz bandwidth, SNR=12 dB
- Operates at 3dB below Shannon capacity

Answer:

- Effective SNR: $\gamma_{eff} = 12 3 = 9$ dB. In linear scale $\gamma_{eff} = 8$ (since 9=3(3))
- Therefore,

$$R = (1 - \Delta)B \log_2(1 + \beta \gamma) = (0.8)(10) \log_2(1 + 8) = 25.3$$
 Mbps

 $^{\circ}\,$ Note the final units are in Mbps

Example Link Budget

Item	Value	Remarks
Transmit power (dBm)	23.0	200 mW transmitter
Distanced based path loss (dB)	90.0	Will depend on propagation model
Shadowing (dB)	20.0	Will depend on obstructions
Receive power (dBm)	-87.0	TX power - path loss - shadowing
Bandwidth (MHz)	20.0	BW of 802.11 signal
Noise figure	5.0	Will depend of implementation of receiver
Noise power (dBm)	-96.0	-174 +10log(BW) + NF
SNR (dB)	9.0	RX pow - Noise pow

Link budget: Measures final SNR as a function of TX power and all impairments

Example: Rate in Free Space

Parameters similar to small cell transmission

Can get data rate of 5 km!

Since we assume free-space
 Will be much worse in reality

% Parameters

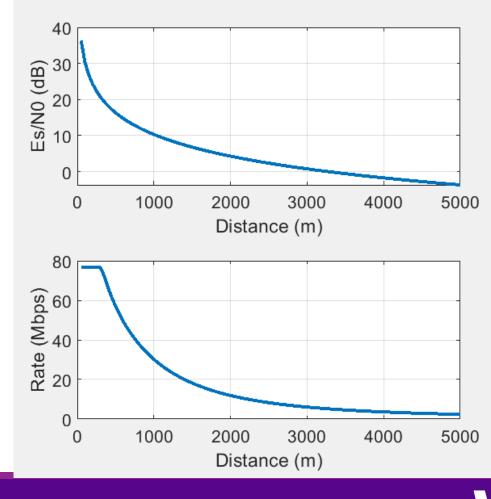
B = 20e6; % bandwidth
fc = 2.3e9; % carrier
NF = 6; % noise figure
snrLoss = 6; % loss from Shannon capacity
maxSE = 4.8;
bwLoss = 0.2;
Ptx = 15; % Power in dBm
dist = linspace(50,5000,100)'; % distance

% Compute the FS path loss vp = physconst('lightspeed'); % speed of light lambda = vp/fc; % wavelength pl = fspl(dist, lambda);

% Compute SNR

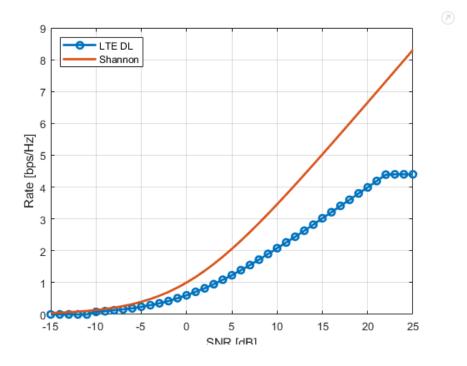
kT = -174; EsN0 = Ptx - pl - kT - NF - 10*log10(B);

% Compute rate
snrEff = 10.^(0.1*(EsN0-snrLoss));
rateMbps = B*(1-bwLoss)*min(log2(1 + snrEff), maxSE)/le6;



In-Class Problem

□ Fit the Rate vs. SNR for 3GPP LTE



Problem 2. Estimating the SNR Requirements for LTE

In this problem, we will see how the performance of a commercial LTE system compares to the Shannon theory. of the system in various scenarios. You can find any of the 3GPP standards by googling, e.g. "3GPP 36.942". E SNR for the uplink and downlink.

Table A.2 Look-Up-Table of UL and DL Throughput vs. SNIR for Baseline E-UTRA Coexistence Studies

	Throughput					Throughput				
SNIR	bps/Hz		kbps per 375kHz RB		SNIR	bp	bps/Hz		kbps per 375kHz RB	
dB	DL	UL	DL	UL	dB	DL	UL	DL	UL	
-15	0	0	0	0	6	1.39	0.93	521	347	
-14	0	0	0	0	7	1.55	1.04	582	388	
-13	0	0	0	0	8	1.72	1.15	646	430	
-12	0	0	0	0	9	1.90	1.26	711	474	
-11	0	0	0	0	10	2.08	1.38	778	519	
-10	0.08	0.06	31	21	11	2.26	1.51	847	565	
-9	0.10	0.07	38	26	12	2.44	1.63	917	611	
-8	0.13	0.08	48	32	13	2.63	1.76	988	658	
-7	0.16	0.10	59	39	14	2.82	1.88	1059	706	
-6	0.19	0.13	73	48	15	3.02	2.00	1131	750	
-5	0.24	0.16	89	59	16	3.21	2.00	1204	750	
-4	0.29	0.19	109	73	17	3.41	2.00	1277	750	
-3	0.35	0.23	132	88	18	3.60	2.00	1350	750	
-2	0.42	0.28	159	106	19	3.80	2.00	1424	750	
-1	0.51	0.34	190	127	20	3.99	2.00	1498	750	
0	0.60	0.40	225	150	21	4.19	2.00	1572	750	
1	0.71	0.47	265	176	22	4.39	2.00	1646	750	
2	0.82	0.55	308	206	23	4.40	2.00	1650	750	
3	0.95	0.63	356	237	24	4.40	2.00	1650	750	
4	1.09	0.72	408	272	25	4.40	2.00	1650	750	
5	1.23	0.82	463	309						

Outline

□Noise and Interference

Communication Requirements and Link Budget Analysis

Non-LOS Propagation

Statistical Models for Path Loss

Demo: Estimating Rates with a 3GPP model

Reflections and Refractions

Sean Hum, Lecture Notes, U of Toronto Reflected wave Transmitted Reflected wave wave Incident wave Incident wave Medium 2 Medium 1 Medium I Medium 2 (e2, µ2) (ϵ_1, μ_1) (ϵ_1, μ_1) (ϵ_2, μ_2) z = 0z = 0(a) Parallel polarization (b) Perpendicular polarization $\eta_2 \cos \theta_i - \eta_1 \cos \theta_t$ $\eta_2 \cos \theta_t - \eta_1 \cos \theta_i$ $\eta_2 \cos \theta_i +$ $\eta_2 \cos \theta_t + \eta_1 \cos \theta_i$ $2n_2 \cos \theta$ $2n_2 \cos \theta$ $\eta_2 \cos \theta_i + \eta_1 \cos \theta_t$ $n_2 \cos \theta_t + n_1 \cos \theta_t$

Occur at any dielectric interface

 $\,\circ\,\,$ Change in characteristic impedance η

Consider two separate polarizations

• Parallel and perpendicular

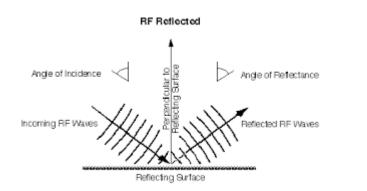
Reflected components

- $\circ \ \theta_r = heta_i$: Reflects in opposite angle
- □ Refracted / transmission component:
 - $\circ \sqrt{\mu_1 \epsilon_1} \sin \theta_i = \sqrt{\mu_2 \epsilon_2} \sin \theta_t$
 - May be no components
- Complex gains on each component $\circ \Gamma, T$

Polarization may in general change

Metal Reflectors

Sean Hum, Lecture Notes, U of Toronto



$$\Gamma_{\parallel} = \frac{\eta_2 \cos \theta_t - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$
$$T_{\parallel} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_t + \eta_1 \cos \theta_i}$$

$$\Gamma_{\perp} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$
$$T_{\perp} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$

Special case of a perfect conductor: • $\eta_2 = 0$

□All signal is reflected back:

 \circ $\Gamma_{||} = \Gamma_{\perp} = -1$

■No transmission component:

 $\circ T_{||} = T_{\perp} = 0$

Polarization direction is unchanged

Transmission Through Typical Materials

Building Material	2.4 GHz Attenuation	□R thr
Solid Wood Door1. 75"	6 dB	att
Steel Fire/Exit Door 1.75"	13 dB	
Steel Fire/Exit Door 2.5"	19 dB	
Brick 3.5"	6 dB	Ma Ma
Concrete Wall 18"	18 dB	
Glass Divider 0.5"	12 dB	
Interior Solid Wall 5"	14 dB	
Marble 2"	6 dB	
Exterior Double Pane Coated Glass 1"	13 dB	
Exterior Single Pane Window 0.5"	7 dB	

Radio waves can transmit hrough materials, but with attenuation

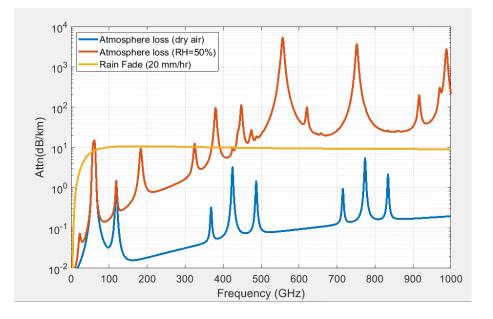
Source: City of Cumberland, Maryland WiFi study

Attenuation Models in MATLAB

□ MATLAB Phased Array Toolbox has many models atmospheric attenuation

- Commands for free space path loss, and attenuation for fog, gas and rain
- Based on well-studied measurements

□Note: Water absorption is particularly important to model for mmWave!



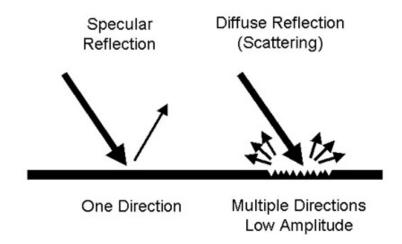
% Frequencies to test					
<pre>freq = linspace(1,1000,1000)'*le9;</pre>					
<pre>range = 1000; % Compute attenuation at 1 km</pre>					
rr = 20; % Rain rate					
T = 15; % temperature in C					
P = 101300.0; % atmospheric pressure					
Wsat = 4.8; % vapor density at saturation (g/m^3)					
RH = 0.5; % relative humidity					
W = RH*Wsat; % vapor density					

Compute attenuations

attn_dry = gaspl(range,freq,T,P,0)'; attn_humid = gaspl(range,freq,T,P,W)'; attn_rain = rainpl(range, freq, rr)';

39

Specular Reflections & Scattering



Due to surface roughness, reflected radio waves can be scattered in many directions.

Amount of power loss in specular component related to height of surface irregularities.

Texts provides probabilistic models to estimate power loss based on random height variations.

Radar Cross Section

Intuition:

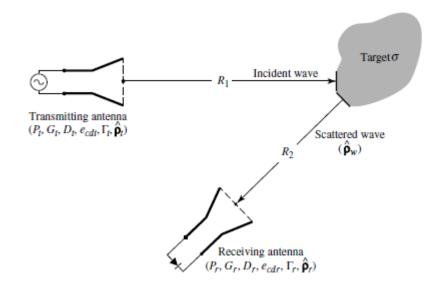
- Let W_i = incident radiation density
- Reflect total power = σW_i
- $\circ \sigma =$ effective area captured for reflection
- Scattered density is: $W_s = \frac{\sigma W_i}{4\pi R_2^2}$

Define radar cross section:

 $\circ \ \sigma = \lim_{R_2 \to \infty} \left[4\pi R_2^2 \frac{W_s}{W_i} \right]$

Defines effective area of receiving target

Generally depends on angle



Radar Equation

Radar Equation: Ratio of RX to TX power

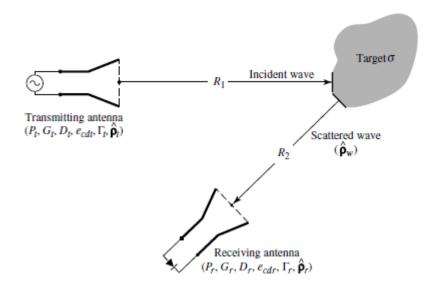
$$\frac{P_r}{P_t} = \frac{\sigma D_r D_t}{4\pi} \left(\frac{\lambda}{4\pi R_1 R_2}\right)^2$$

• Proof: Next slide

Provides basic equation for radar link budgets

□Key points:

- Power decays as $\frac{1}{R^4}$
- Much faster than LOS free-space $\frac{1}{R^2}$
- Remember directivity and RCS depend on angle



Proof of the Radar Equation

Incident density: $W_i = \frac{P_t D_t}{4\pi R_1^2}$

Reflected density:

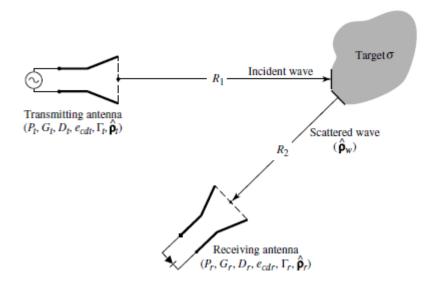
$$W_{s} = \frac{\sigma W_{i}}{4\pi R_{2}^{2}} = \frac{\sigma P_{t} D_{t}}{(4\pi R_{1}R_{2})^{2}}$$

$$\Box \text{Received power } P_r = A_r W_s$$

Using antenna-directivity relation: $A_r = \frac{D_r \lambda^2}{4\pi}$

Therefore:

$$P_r = \frac{\sigma \lambda^2 D_r D_t}{4\pi (4\pi R_1 R_2)^2} P_t$$



Typical RCS Values

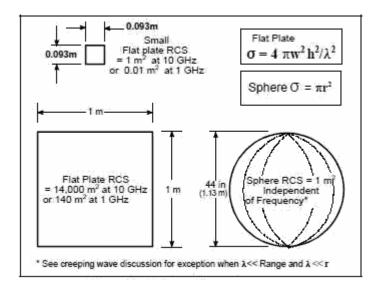
TABLE 2.2 RCS of Some Typical Targets

	Typical RCSs [22]		
Object	RCS (<i>m</i> ²)	RCS (dBsm)	
Pickup truck	200	23	
Automobile	100	20	
Jumbo jet airliner	100	20	
Large bomber or commercial jet	40	16	
Cabin cruiser boat	10	10	
Large fighter aircraft	6	7.78	
Small fighter aircraft or four-passenger jet	2	3	
Adult male	1	0	
Conventional winged missile	0.5	-3	
Bird	0.01	-20	
Insect	0.00001	-50	
Advanced tactical fighter	0.000001	-60	

From Balanis

□Values are often quoted in dBsm

• $\sigma[dBsm] = 10 \log_{10} \left(\frac{\sigma}{1 m^2}\right)$

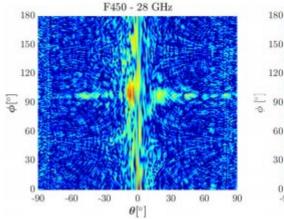


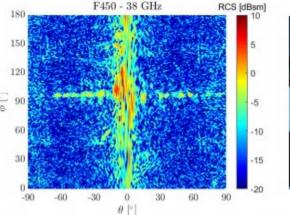
From RFCafe

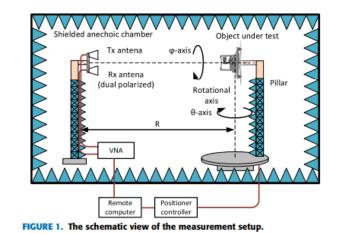
Note formulas only true valid in optical range:

- Range $\gg \lambda$
- Area $\gg \lambda^2$

Example: RCS of a UAV







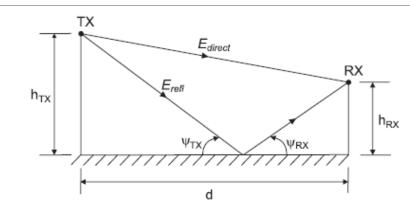
Measurements of RCS of commercial UAVs

• Use an anechoic chamber (removes reflections)

Notice RCS is much larger when facing the droneVery small when seeing drone from side

From Semkin, Vasilii, et al. "Analyzing Radar Cross Section signatures of diverse drone models at mmWave frequencies." *IEEE Access* (2020).

Propagation Loss with Reflections



 \Box In free space, we saw power density decays as d^2

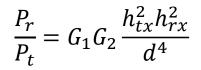
 \Box Due to ground reflections, power decays faster than d^2

 \Box For d large, decays as d^{α} , α = path loss exponent.

 $\,\circ\,\,\alpha$ has been observed from 1.5 to 5.5, but usu. btw 3 and 5.

□For single ground reflection, can show α =4.

- $^{\circ}~$ Based on reflected wave canceling direct wave
- See <u>www.wiley.com/go/molisch</u> Appendix 4-A



Path Loss Exponent, Coverage & Interference

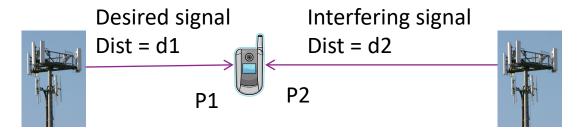
 \Box For coverage-limited systems, low α is good

Power decays slower => signals have greater range

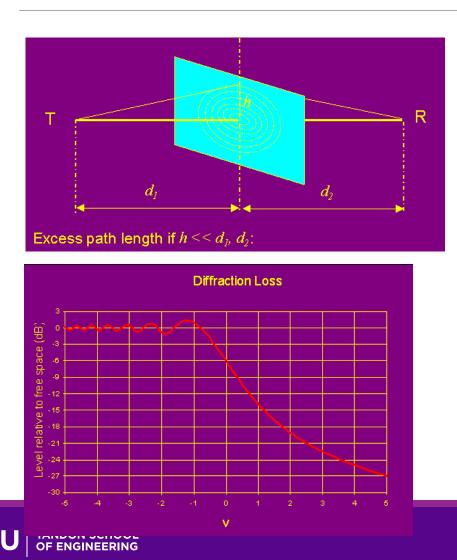
 \Box For interference-limited systems, high α is good

• Ex: If thermal noise is negligible:

$$SINR = \frac{P_1}{P_{noise} + P_2} \approx \frac{P_1}{P_2} = \left(\frac{d_2}{d_1}\right)^{\alpha}$$



Diffraction



□Interfering objects (IOs) do not result in sharp shadows.

- Due to wave nature of EM radiation
- Simple ray model is not correct.

□ Waves diffract at IO boundaries,

 $^{\circ}\,$ Intensity after IO can be stronger in parts than with no IO!

Example: Knife-edge diffraction:

- Diffraction around semi-infinite barrier
- Loss dictated by normalized excess path length

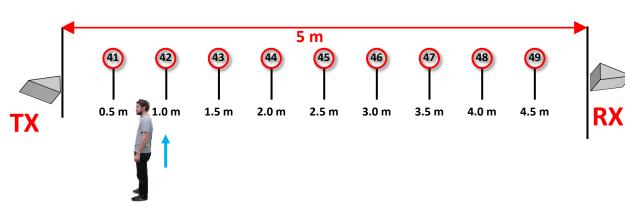
$$\nu = h \sqrt{\frac{2(d_1 + d_2)}{\lambda d_1 d_2}}$$

http://www.mike-willis.com/Tutorial/diffraction.htm

V

48

Human Blocking at 73GHz Example



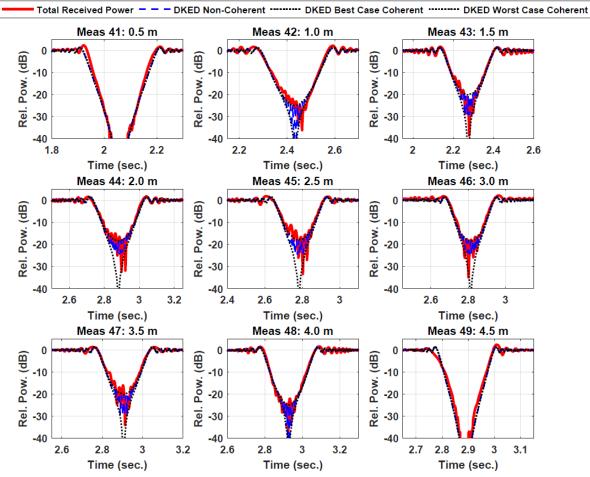
Between 25 and 40 dB blockage

Depends on distance

Total power predicted by double knife edge diffraction

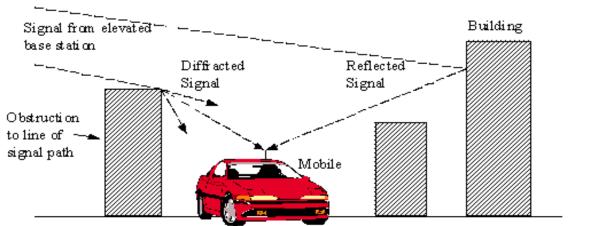
□ Piecewise linear model used by 3GPP

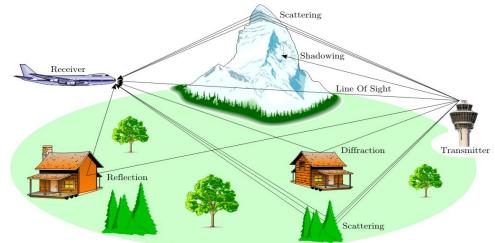
G. R. MacCartney, Jr., S. Deng, S. Sun, and T. S. Rappaport, "73 GHz Millimeter-Wave Human Blockage and Dynamic Measurements," IEEE VTC 2016



49

Radio Waves Have Many Paths



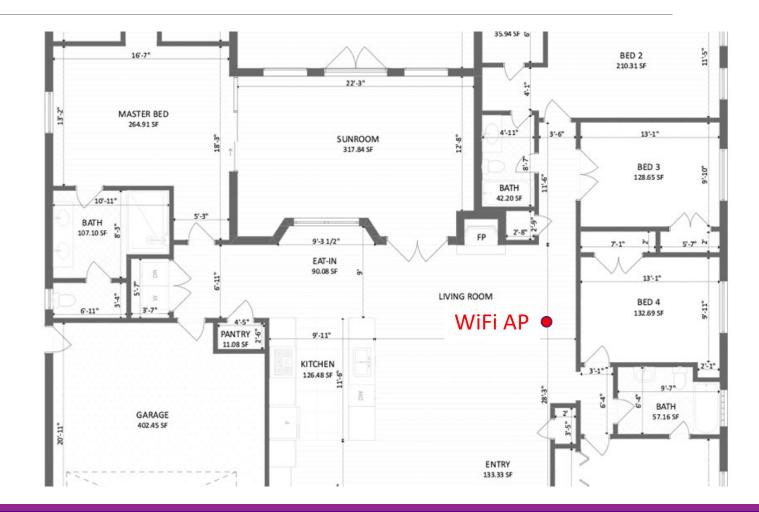


In-Class Exercise

A WiFi access point is located as marked.

Find locations where each of the following types of paths could be received. Also, draw the path:

- Direct LOS
- Reflected path one bounce
- Reflected path two bounces
- Diffracted path
- Transmission through wall or window



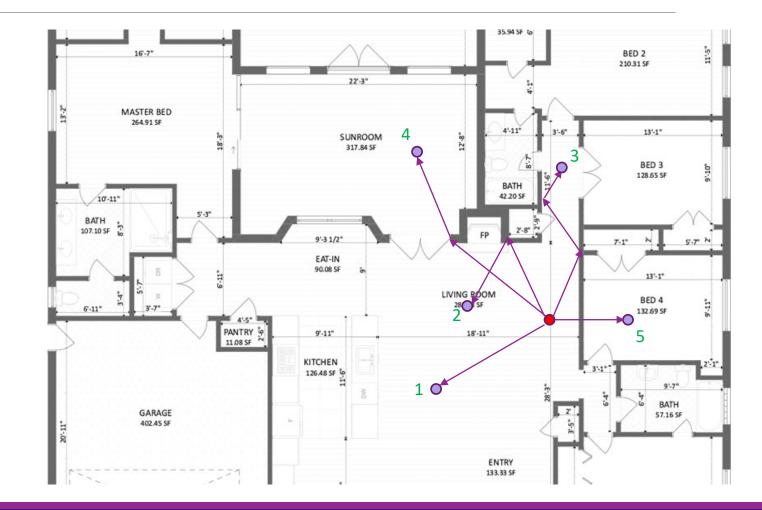
51

In-Class Exercise Solution

A WiFi access point is located as marked.

Find locations where each of the following types of paths could be received. Also, draw the path:

- 1. Direct LOS
- 2. Reflected path one bounce
- 3. Reflected path two bounces
- 4. Diffracted path
- 5. Transmission through wall or window



Outline

Noise and Interference

Communication Requirements and Link Budget Analysis

□Non-LOS Propagation

Statistical Models for Path Loss

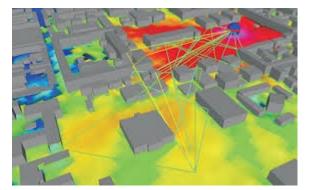
Demo: Estimating Rates with a 3GPP model

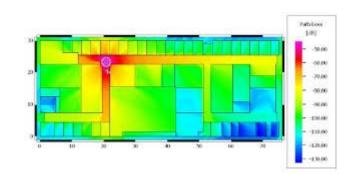
Real Path Loss

□ Path loss is a complex function of environment

□Varies with distance, obstacles, reflections ...

□Site specific path loss can be predicted with ray tracing





Outputs of commercial WinProp ray tracer

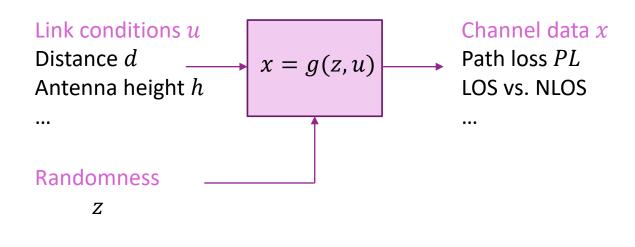
Statistical Channel Models

Channel characteristics modeled as a random variable

- Environmental effects are modeled as random
- Typically, a generative model:
 - x = g(u, z)
 - *u*: Link conditions
 - x: Channel state
 - z: Randomness

□ Model fit for a type of environment

- Eg. Urban, suburban, indoor, ... Not site-specific
- Based on data
- Find function g(u, z) to match conditional distribution P(x|u)



55

Simulation with a Channel Model



Linear Models

□ Floating intercept model:

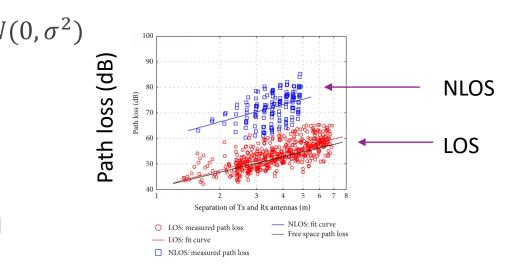
- $PL(d) = 10\alpha \log_{10} d + \beta + \xi, \qquad \xi \sim N(0, \sigma^2)$
- Parameters α , β , σ^2 fit from data

Used widely in 3GPP, IEEE

Different models for different scenarios

Caution in any fit model:

• Do not use outside distances, frequencies it was derived



Distance (log scale)

28 and 73 GHz measurements in:

Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. *IEEE journal on selected areas in communications*, *32*(6), 1164-1179.

Related Models

Close in (CI) model

 $^{\circ}\,$ Match free space at some fixed reference distance d_0

$$PL(d) = FSPL(d_0) + 10\alpha \log_{10} \frac{d}{d_0} + \xi$$

- $\circ~$ One less parameter to fit
- $^{\circ}\,$ Matches true path loss at d_0

Hata model,

- Multi-slope models
- □ 3GPP NLOS / LOS hybrid models

Outage Probability

 \Box Consider transmission with fixed MCS with rate R

• No adaptation!

 $\Box Requires SNR \geq SNR_{min}$

- \circ Outage: Event that $SNR < SNR_{min}$
- Results in zero rate

□With variable path loss, *SNR*, is a random variable

Outage probability:

$$P_{out} = P(SNR < SNR_{min})$$

= $P(P_{TX} - PL(d) - P_{noise} < SNR_{min})$

In-Class Exercise

Problem 3: Simulating Path Loss Variations

Suppose the TX power is Ptx and the path loss can be modeled as a random variable as follows:

- The channel is either LOS or NLOS with probability ProbLos or 1-ProbLos.
- If the channel is LOS, the path loss is lognormally distributed with mean PLLos and standard deviation stdLos.
- If the channel is NLOS, the path loss is lognormally distributed with mean PLNlos and standard deviation stdNlos.

Generate n=10000 channel instances and plot the histogram of the received power. You may use the MATLAB histogram function.

Ptx = 15;	% Tx power in dBm
ProbLos = 0.4;	% LOS probability
PLNlos = 80;	% Path loss for LOS (dB)
PLLos = 100;	% Path loss for NLOS (dB)
stdLos = 8;	% Path loss std dev for LOS (dB)
stdNlos = 4;	% Path loss std dev for LOS (dB)

Outline

□Noise and Interference

Communication Requirements and Link Budget Analysis

□Non-LOS Propagation

Statistical Models for Path Loss

Demo: Estimating Rates with a 3GPP model

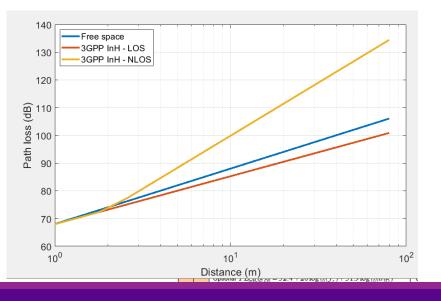
Ex: 3GPP Indoor Home Office Model

□ 3GPP has models for many statistical models

38.900: Path loss models for above 6 GHz

Example: Indoor home office

- Separate models for LOS and NLOS
- Plotted is the median path loss vs. distance



% Parameters fc = 60e9; % Frequency vp = physconst('lightspeed'); % speed of light lambda = vp/fc; % wavelength % Compute LOS and NLOS path loss dist = linspace(1,80,100)'; pllos = 32.4 + 17.3*logl0(dist) + 20*logl0(fc/le9); plnlos = 17.3 + 38.3*logl0(dist) + 24.9*logl0(fc/le9); plnlos = max(pllos, plnlos); plfs = fspl(dist,lambda);

62

L					L
InH - Office	fice	LOS	$PL_{\text{InH-LOS}} = 32.4 + 17.3 \log_{10}(d_{3D}) + 20 \log_{10}(f_c)$	$\sigma_{\rm SF}=3$	$1\mathrm{m} \le d_{3\mathrm{D}} \le 100\mathrm{m}$
	InH - Of	NLOS	$\begin{split} PL_{\rm InH-NLOS} &= \max(PL_{\rm InH-LOS}, PL'_{\rm InH-NLOS}) \\ PL'_{\rm InH-NLOS} &= 38.3\log_{10}(d_{\rm 3D}) + 17.30 + 24.9\log_{10}(f_c) \end{split}$	$\sigma_{\rm SF} = 8.03$	$1\mathrm{m} \leq d_{\mathrm{3D}} \leq 86\mathrm{m}$
		~	Optional $PL'_{\text{InH-NLOS}} = 32.4 + 20 \log_{10}(f_c) + 31.9 \log_{10}(d_{3D})$	$\sigma_{\rm SF} = 8.29$	$1 \mathrm{m} \le d_{\mathrm{3D}} \le 86 \mathrm{m}$
- F					

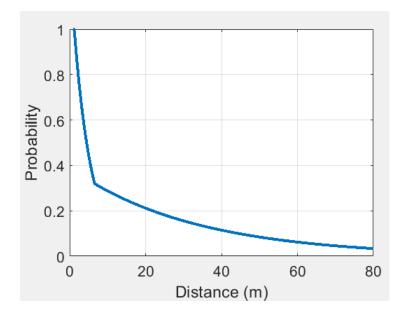
Ex: Probability of LOS

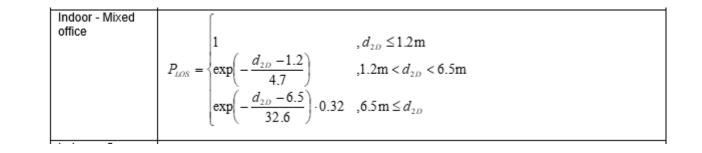
Model has a probability of LOS

□ Function of distance

• As distance is larger, probability of LOS is smaller

%% Plot the probability of LOS
plos1 = min(exp(-(dist-1.2)/4.7), 1);
plos = min(0.32*exp(-(dist-6.5)/32.6), plos1);
plot(dist, plos, 'Linewidth', 3);





Ex: Generating Random Samples

The full model generate random path loss

- Path loss is a function of distance
- Samples from the conditional distribution P(L|d)

Steps:

- Compute median LOS and NLOS path loss
- Add shadowing
- Randomly select between LOS and NLOS
- Use PLOS probability

```
function pl = pathLoss3GPPInH(dist,fc)
```

```
% pathLoss3GPPInH: Generates random path loss
%
% Samples the path loss using the 3GPP-InH model
```

```
% Compute the median path losses for LOS and NLOS
pllos = 32.4 + 17.3*logl0(dist) + 20*logl0(fc/le9);
plnlos = 17.3 + 38.3*logl0(dist) + 24.9*logl0(fc/le9);
```

```
% Add shadowing
w = randn(size(dist));
pllos = pllos + 3*w;
plnlos = plnlos + 8.03*w;
```

```
% Compute probability of being LOS or NLOS
plos = min( exp(-(dist-1.2)/4.7), 1);
plos = min( 0.32*exp(-(dist-6.5)/32.6), plos);
```

```
% Select randomly between LOS and NLOS path loss
u = (rand(size(dist)) < plos);
pl = u.*pllos + (l-u).*plnlos;
```

end

Example Simple Simulation

Simulations: Often used to estimate distribution of rates

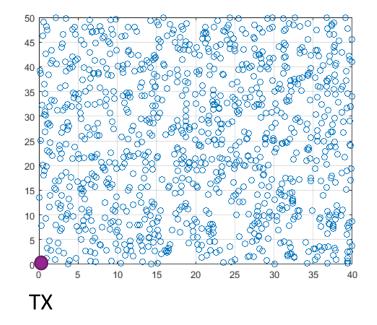
Assume some statistical distribution on locations and propagation

Illustrate with a simple simulation

- RX is randomly located in a square region.
- TX is located at origin

□ 3GPP has much more realistic deployment models

```
% Parameters
len = 40; % length of region in m
wid = 50; % width in m
nx = 1000; % number of random points
% Generate random points in a square
x = rand(nx,2).*[len wid];
% Plot the random points
plot(x(:,1), x(:,2), 'o');
grid on;
```



Generate Random Path Loss

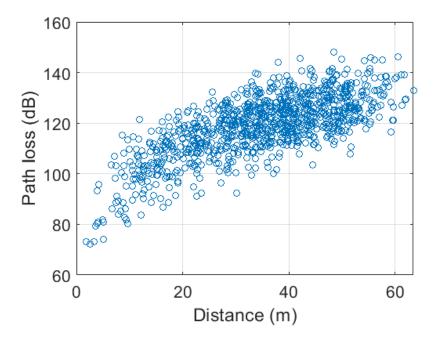
Generate random path losses based on distances

```
\ We will make some simple assumptions for a wifi-like system fc = 60e9;
```

```
% Compute the distances
dh = 1; % Distances in height
dist = sqrt(sum(x.^2,2) + dh^2);
```

```
% We next generate random path losses to each
pl = pathLoss3GPPInH(dist, fc);
```

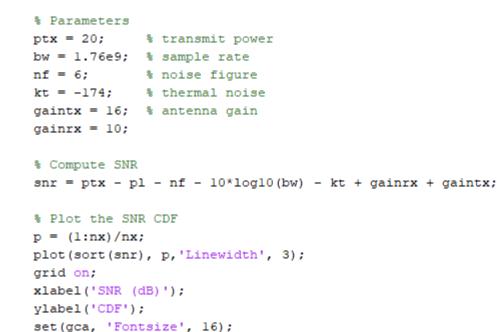
```
% Plot a scatter plot of the PL vs. distance
plot(dist, pl, 'o');
grid on;
xlabel('Distance (m)');
ylabel('Path loss (dB)');
set(gca, 'Fontsize', 16);
```

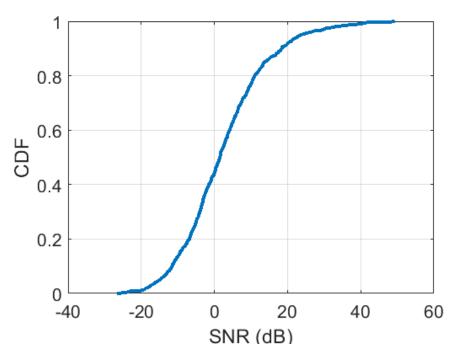


Compute SNR Distribution

□ Make assumptions similar to an 802.11ad-like system

- We assume very directive antennas
- Later we show how to do this with beamforming





Compute Rate Distribution

Compute rate distribution assuming simple backoff from Shannon capacity

• More realistic models are possible

□Note the large range of rates in this region

```
% Finally we compute the rate based on some simple simulatins
snrLoss = 6;
bwLoss = 0.2;
maxSE = 4.8;
rate = bw*(1-bwLoss)*min(log2(1 + 10.^(0.1*(snr-snrLoss))), maxSE);
rate = rate/le6;
```

```
p = (l:nx)/nx;
semilogx(sort(rate), p,'Linewidth', 3);
grid on;
xlabel('Rate (Mbps)');
ylabel('CDF');
set(gca, 'Fontsize', 16);
```

