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Fading
From the Introduction of a classic text:

There are two fundamental aspects of wireless 
communication that make the problem challenging 
and interesting. 

…First is the phenomenon of fading …

…Second …there is significant interference …
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Learning Objectives
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Describe up and down-conversion in time- and frequency-domain

Describe the steps in the DAC and ADC including the filtering

Compute a discrete-time and continuous-time base equivalent channels from the passband

Simulate fractional delays and gains in the sampled data

Describe and simulate a deterministic multi-path wireless channel

Compute the time-varying frequency response given the path parameters

Describe a statistical model for multi-path fading

Approximately compute the coherence time and bandwidth given a channel



Outline
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Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

Statistical Descriptions of Fading



Up- and Downconversion
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RF communication systems:
◦ Information occurs and is processed in complex baseband
◦ Transmitted and received in real passband

Up and down-conversion:  Shift center frequency of signals
Also called mixing
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Up and Down-Conversion in Time Domain
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Complex baseband:
◦ Two real signals, 𝑢𝑢𝐼𝐼 𝑡𝑡 ,𝑢𝑢𝑄𝑄 𝑡𝑡
◦ Or, one complex signal:  

𝑢𝑢 𝑡𝑡 = 𝑢𝑢𝐼𝐼 𝑡𝑡 + 𝑗𝑗𝑢𝑢𝑄𝑄 𝑡𝑡

upconversion

downconversion

𝑢𝑢𝑝𝑝 𝑡𝑡 = 𝑅𝑅𝑅𝑅(𝑢𝑢 𝑡𝑡 𝑅𝑅𝑗𝑗𝜔𝜔𝑐𝑐𝑡𝑡)

𝑣𝑣 𝑡𝑡 = 2𝑢𝑢𝑝𝑝 𝑡𝑡 𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝑡𝑡

𝑢𝑢 𝑡𝑡 = ℎ𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡 ∗ 𝑣𝑣(𝑡𝑡)

Real passband:  𝑢𝑢𝑝𝑝 𝑡𝑡

Note:  downconversion needs:
• Multiplication by 2
• Low pass filtering



Mixing in Frequency Domain
Baseband signals
◦ Centered around 𝑓𝑓 = 0, complex

◦ 𝑊𝑊
2

= single sided bandwidth 

◦ 𝑊𝑊 = two sided bandwidth

◦ Band-limited to 𝑓𝑓 ≤ 𝑊𝑊
2

Passband signals
◦ Centered around 𝑓𝑓 = 𝑓𝑓𝑐𝑐 , real
◦ 𝑊𝑊 = bandwidth (per side or image)

◦ Band-limited to 𝑓𝑓 − 𝑓𝑓𝑐𝑐 ≤ 𝑊𝑊
2
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Discrete IQ Mixer
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LO = “local oscillator” =  square or sine wave at 𝑓𝑓𝑐𝑐
I1, I2 = I and Q inputs.  
◦ Generally, lowpass

RF = passband output centered at 𝑓𝑓𝑐𝑐

Datashe
et

RF [GHz] LO 
[GHz]

IF [MHz] Conversi
on Loss 

[dB]

Image 
Rejectio
n [dB]

Amplitud
e 

Deviatio
n [dB]

Phase 
Deviation 
[Degrees]

Isolations 
L-R [dB]

Isolations 
L-I [dB]

IQ-0318 3 to 18 3 to 18 DC to 500 7 22 0.75 10 40 20

http://www.markimicrowave.com/Mixers/IQ_Quadrature-
IF_Double-Balanced/IQ-0318.aspx

http://www.markimicrowave.com/Assets/datasheets/IQ-0318.pdf
http://www.markimicrowave.com/Mixers/IQ_Quadrature-IF_Double-Balanced/IQ-0318.aspx


Baseband Equivalent Channel
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Filtering at passband equivalent to complex baseband filter

Assuming downconversion filter is ideal:
◦ 𝐻𝐻𝑏𝑏 𝑓𝑓 = 𝐻𝐻𝑝𝑝 𝑓𝑓 + 𝑓𝑓𝑐𝑐 for 𝑓𝑓 ≤ 𝑊𝑊

2
◦ Simply shift 𝐻𝐻𝑝𝑝 𝑓𝑓 to the left by 𝑓𝑓𝑐𝑐.

𝑓𝑓𝑐𝑐𝑓𝑓𝑐𝑐

𝑠𝑠(𝑡𝑡) 𝑠𝑠𝑝𝑝(𝑡𝑡) 𝑦𝑦𝑝𝑝(𝑡𝑡) 𝑦𝑦(𝑡𝑡)

Upconvert Downconvert

𝐻𝐻𝑝𝑝(𝑓𝑓)

Filter

𝑠𝑠(𝑡𝑡) 𝑦𝑦(𝑡𝑡)𝐻𝐻𝑏𝑏(𝑓𝑓)

Filter

=



Important Special Case:  Delay
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Delay, gain in passband ⇒ delay, gain and phase rotation in baseband 
Proof:
◦ Passband frequency response is:  𝐻𝐻𝑝𝑝 𝑓𝑓 = 𝐴𝐴𝑅𝑅−2𝜋𝜋𝑗𝑗𝜋𝜋𝜋𝜋

◦ Baseband frequency response: 𝐻𝐻𝑏𝑏 𝑓𝑓 = 𝐻𝐻𝑝𝑝 𝑓𝑓 + 𝑓𝑓𝑐𝑐 = 𝐴𝐴𝑅𝑅−2𝜋𝜋𝑗𝑗 𝜋𝜋𝑐𝑐+𝜋𝜋 𝜋𝜋

◦ Equivalent impulse response:  ℎ𝑏𝑏 𝑡𝑡 = 𝐴𝐴𝑅𝑅−2𝜋𝜋𝑗𝑗𝜋𝜋𝑐𝑐𝜋𝜋𝛿𝛿(𝑡𝑡 − 𝜏𝜏)

ℎ𝑝𝑝 𝑡𝑡 = 𝐴𝐴𝛿𝛿 𝑡𝑡 − 𝜏𝜏

Passband channel Baseband equivalent 
channel

ℎ𝑏𝑏 𝑡𝑡 = 𝐴𝐴𝑅𝑅−2𝜋𝜋𝑗𝑗𝜋𝜋𝑐𝑐𝜋𝜋𝛿𝛿(𝑡𝑡 − 𝜏𝜏)

𝐴𝐴 = gain
𝜏𝜏 = delay 

𝐴𝐴 = gain
𝜏𝜏 = delay
𝜃𝜃 = 2𝜋𝜋𝑓𝑓𝑐𝑐𝜏𝜏 = phase rotation 



Synchronization and Delay Errors
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Time synchronization at the receiver:
◦ Estimate the arrival time of the signal  �̂�𝜏
◦ Starts processing remainder of signal starting at �̂�𝜏
◦ Equivalent to shifting received signal ahead in time by �̂�𝜏: 𝑦𝑦 𝑡𝑡 = 𝑟𝑟 𝑡𝑡 + �̂�𝜏
◦ Remaining time error: Δ𝜏𝜏 = 𝜏𝜏 − �̂�𝜏

Later, we will discuss:
◦ How to estimate 𝜏𝜏 (synchronization) and how to correct for gain and phase error (equalization)

𝑠𝑠(𝑡𝑡)

𝑟𝑟 𝑡𝑡
= 𝐴𝐴𝑅𝑅𝑗𝑗𝑗𝑗𝑠𝑠(𝑡𝑡 − 𝜏𝜏)Delay 

& gain

Delay estimate  �̂�𝜏

Shift

𝑦𝑦 𝑡𝑡
= 𝑟𝑟 𝑡𝑡 + �̂�𝜏
= 𝐴𝐴𝑅𝑅𝑗𝑗𝑗𝑗𝑠𝑠(𝑡𝑡 − Δ𝜏𝜏)

0

𝐴𝐴𝐴𝐴𝑅𝑅𝑗𝑗𝑗𝑗𝐴𝐴

𝜏𝜏
Sync



In-Class Problem
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Frequency Errors

13

Oscillators at TX and RX always have some mismatch.  To analyze, suppose:
◦ Upconversion:  𝑠𝑠𝑝𝑝 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝑠𝑠 𝑡𝑡 𝑅𝑅𝑗𝑗𝜔𝜔1𝑡𝑡+𝑗𝑗1 ,
◦ Downcoversion:  𝑟𝑟 𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿( 2𝑠𝑠𝑝𝑝 𝑡𝑡 𝑅𝑅−(𝑗𝑗𝜔𝜔2𝑡𝑡+𝑗𝑗2) )

LO error leads to time-varying gain: 𝑟𝑟 𝑡𝑡 = 𝑔𝑔 𝑡𝑡 𝑠𝑠 𝑡𝑡 , 𝑔𝑔 𝑡𝑡 = 𝑅𝑅𝑗𝑗((𝜔𝜔0−𝜔𝜔1)𝑡𝑡+(𝑗𝑗0−𝑗𝑗1))

◦ Frequency and phase shift

𝑠𝑠(𝑡𝑡) 𝑟𝑟(𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝑅𝑅𝑗𝑗((𝜔𝜔0−𝜔𝜔1)𝑡𝑡+(𝑗𝑗0−𝑗𝑗1))×

LO 1 𝜔𝜔1,𝜃𝜃1

×

LO 2 𝜔𝜔2,𝜃𝜃2



In-Class Problem
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Outline

15

Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

Statistical Descriptions of Fading



Typical Digital Communication Path
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All modern communication systems TX and RX digital samples

Transmitter:  DAC + filtering with 𝑝𝑝𝑡𝑡𝑡𝑡(𝑡𝑡).  Filtering used to:
◦ Suppress out of band emissions

Receiver:  Filters with 𝑝𝑝𝑟𝑟𝑡𝑡(𝑡𝑡) then performs ADC.  Filtering plays two roles:
◦ Reduces noise
◦ Remove out-of-band signals before ADC.  (i.e.  Anti-aliasing)

Filter design discussed in digital communications class

𝑝𝑝𝑡𝑡𝑡𝑡(𝑡𝑡) Ideal A/DIdeal D/A

𝑠𝑠[𝑛𝑛]
𝑢𝑢𝛿𝛿(𝑡𝑡) 𝑢𝑢(𝑡𝑡) 𝑟𝑟(𝑡𝑡) 𝑣𝑣(𝑡𝑡)

𝑟𝑟[𝑛𝑛]

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑝𝑝𝑟𝑟𝑡𝑡(𝑡𝑡)TX samples RX samples



Review of DTFT
Given discrete-time sequence 𝑠𝑠[𝑛𝑛]
◦ Real or complex

Discrete-time Fourier Transform:  𝑆𝑆 Ω = ∑𝑐𝑐 𝑠𝑠 𝑛𝑛 𝑅𝑅−𝑗𝑗Ω𝑐𝑐

Inverse DTFT:  𝑠𝑠 𝑛𝑛 = 1
2𝜋𝜋 ∫−𝜋𝜋

𝜋𝜋 𝑆𝑆 Ω 𝑅𝑅𝑗𝑗Ω𝑐𝑐𝑑𝑑Ω

Note 𝑆𝑆 Ω is always a 2𝜋𝜋 periodic signal
◦ Can take integral for inverse DTFT on any period of 2𝜋𝜋

Ω is the discrete frequency. Units is radians per sample.

For finite length signals and finite number of Ω, can be computed via FFT

Review in your signals and systems class
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Common DTFT Pairs
See Wikipedia
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Discrete-Time Systems

Consider discrete-time LTI system

Time-domain:   Characterized by impulse response ℎ 𝑛𝑛

𝑟𝑟 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑠𝑠 𝑛𝑛 = �
𝑘𝑘

ℎ 𝑘𝑘 𝑠𝑠 𝑛𝑛 − 𝑘𝑘

Frequency-domain:   Characterized by frequency response 𝐻𝐻 Ω
𝑅𝑅 Ω = 𝐻𝐻 Ω 𝑆𝑆 Ω

◦ 𝑅𝑅 Ω = ∑𝑟𝑟 𝑛𝑛 𝑅𝑅−𝑗𝑗Ω𝑐𝑐, 𝑟𝑟 𝑛𝑛 = 1
2𝜋𝜋 ∫−𝜋𝜋

𝜋𝜋 𝑅𝑅 Ω 𝑅𝑅𝑗𝑗Ω𝑐𝑐𝑑𝑑Ω

19

𝐻𝐻(Ω)𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]



DT Equivalent Channel
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Discrete-time baseband equivalent channel:  
◦ Describes equivalent mapping from 𝑠𝑠 𝑛𝑛 to 𝑟𝑟[𝑛𝑛]
◦ Includes effects of TX and RX filtering and continuous-time baseband channel

Band-limited filters:  
◦ Suppose one of 𝐿𝐿𝑟𝑟𝑡𝑡 ,𝐿𝐿𝑡𝑡𝑡𝑡 is bandlimited to 𝑓𝑓 < 1

2𝑇𝑇
(no out-of-band emissions or aliasing)

◦ Then, discrete-time equivalent channel reduces to:

𝐻𝐻 Ω = 1
𝑇𝑇
𝐿𝐿𝑟𝑟𝑡𝑡

Ω
2𝜋𝜋𝑇𝑇

𝐿𝐿𝑡𝑡𝑡𝑡
Ω
2𝜋𝜋𝑇𝑇

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Ω
2𝜋𝜋𝑇𝑇

for Ω < 𝜋𝜋

𝑝𝑝𝑡𝑡𝑡𝑡(𝑡𝑡) ADCDAC
𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑝𝑝𝑟𝑟𝑡𝑡(𝑡𝑡) 𝐻𝐻(Ω)
𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]

=



Ideal Filtering
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Suppose sample rate  𝑓𝑓𝑠𝑠 = 1
𝑇𝑇

“Ideal” TX and RX filter :  
◦ 𝑝𝑝𝑡𝑡𝑡𝑡 𝑡𝑡 = 𝑝𝑝𝑟𝑟𝑡𝑡 𝑡𝑡 = 1

𝑇𝑇
Sinc 𝑡𝑡

𝑇𝑇

◦ In frequency domain:  𝐿𝐿𝑟𝑟𝑡𝑡 𝑓𝑓 = 𝐿𝐿𝑡𝑡𝑡𝑡 𝑓𝑓 = 𝑇𝑇Rect 𝑓𝑓𝑇𝑇
◦ Also called “brick wall” filter

Most practical filters match this well 
◦ Up to gain and delay

𝐿𝐿𝑡𝑡𝑡𝑡 𝑓𝑓 = 𝐿𝐿𝑟𝑟𝑡𝑡 𝑓𝑓

𝑓𝑓𝑠𝑠
2

−
𝑓𝑓𝑠𝑠
2

𝑇𝑇

𝑓𝑓

𝑝𝑝𝑡𝑡𝑡𝑡(𝑡𝑡) ADCDAC
𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑝𝑝𝑟𝑟𝑡𝑡(𝑡𝑡) 𝐻𝐻(Ω)
𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]

=



Ideal Filtering
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Assume TX and RX filters are ideal

Theorem: DT equivalent channel is the re-scaled continuous-time channel

◦ Frequency 𝑓𝑓 mapped to Ω = 2𝜋𝜋𝑇𝑇𝑓𝑓

𝑝𝑝𝑡𝑡𝑡𝑡(𝑡𝑡) ADCDAC
𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]

ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑝𝑝𝑟𝑟𝑡𝑡(𝑡𝑡) 𝐻𝐻(Ω)
𝑠𝑠[𝑛𝑛] 𝑟𝑟[𝑛𝑛]

=

𝐻𝐻 Ω = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Ω
2𝜋𝜋𝑇𝑇



Special Case:  Delay

Suppose passband has a gain and delay.  

Then discrete-time frequency-domain:  gain and linear phase rotation over frequency
◦ Rotates 2𝜋𝜋 𝜏𝜏/𝑇𝑇 radians every period

In discrete-time time-domain:  gain, constant phase rotation and sinc filter with delay

23

Passband Continuous-Time Baseband Discrete-Time Baseband 

Impulse response ℎ𝑝𝑝 𝑡𝑡 = 𝐴𝐴𝛿𝛿 𝑡𝑡 − 𝜏𝜏 ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝐴𝐴𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋𝛿𝛿 𝑡𝑡 − 𝜏𝜏 ℎ 𝑛𝑛 = 𝐴𝐴𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠
𝜏𝜏𝑛𝑛
𝑇𝑇

Frequency response 𝐻𝐻𝑝𝑝 𝑓𝑓 = 𝐴𝐴𝑅𝑅−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓 = 𝐴𝐴𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋𝑅𝑅−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝐻𝐻 Ω = 𝐴𝐴𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋𝑅𝑅−𝑗𝑗Ω𝜋𝜋/𝑇𝑇



Sinc Filter with Integer Delays
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Suppose we have ideal filtering and passband has delay and gain 

From previous slide, 𝑟𝑟 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑠𝑠 𝑛𝑛 , ℎ 𝑛𝑛 = 𝐴𝐴𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 𝜋𝜋𝑐𝑐
𝑇𝑇

Special case 1:  No delay   𝜏𝜏 = 0:
◦ ℎ 𝑛𝑛 = 𝐴𝐴𝛿𝛿[𝑛𝑛] ⇒ 𝑟𝑟 𝑛𝑛 = 𝐴𝐴𝑠𝑠 𝑛𝑛
◦ Baseband channel introduces only gain

Special case 2:  Integer delays   𝜏𝜏 = 𝑘𝑘𝑇𝑇:
◦ ℎ 𝑛𝑛 = 𝐴𝐴𝛿𝛿[𝑛𝑛 − 𝑘𝑘] ⇒ 𝑟𝑟 𝑛𝑛 = 𝐴𝐴𝑠𝑠 𝑛𝑛 − 𝑘𝑘
◦ Baseband channel introduces gain and integer shift

Ex:  Suppose sample rate is 20 MHz and signal is delayed by 400 ns.  
◦ Integer delay in discrete-time signal is 20

0.4
= 50 samples



Sinc Pulses with Fractional Delay

25

ℎ 𝑛𝑛 = 𝐴𝐴𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 𝜋𝜋𝑐𝑐
𝑇𝑇

Causes blurring over multiple samples

Inter-symbol interference

Will need equalization to correct
◦ More on this later

𝜏𝜏 = 0

𝜏𝜏 = 8

𝜏𝜏 = 8.2

𝜏𝜏 = 8.5



Simulating Fractional Delays in MATLAB
Code on previous slide was create with DSP toolbox
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Creates T x D matrix
Row 𝑠𝑠 is delayed by 𝜏𝜏(𝑠𝑠)



In-Class Problem:  
Fractional Delays on Constellations

27



Outline
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Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

Statistical Descriptions of Fading



Doppler Shift
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With mobile velocity, propagation delay changes with time.

In complex baseband signal:
𝑟𝑟 𝑡𝑡 = 𝛼𝛼𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋 𝑡𝑡 𝑢𝑢 𝑡𝑡 − 𝜏𝜏 𝑡𝑡 = 𝛼𝛼𝑅𝑅𝑗𝑗2𝜋𝜋 Δ𝜋𝜋𝑡𝑡−𝑑𝑑0𝜋𝜋𝑐𝑐 𝑢𝑢(𝑡𝑡 − 𝜏𝜏 𝑡𝑡 )

Velocity results in Doppler shift: Δ𝑓𝑓 = ⁄𝑣𝑣𝑡𝑡 cos 𝜃𝜃 𝑠𝑠
Change in frequency, although not gain.

Mobile velocity 𝑣𝑣𝜏𝜏 𝑡𝑡 = ⁄(𝑑𝑑0 − 𝑣𝑣𝑡𝑡 cos𝜃𝜃) 𝑠𝑠

𝜏𝜏 0 = ⁄𝑑𝑑0 𝑠𝑠
𝜃𝜃



Sample Problem
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Suppose the carrier frequency is 𝑓𝑓𝑐𝑐=2.1GHz, and a car moves towards a base station at 100 
km/h.  What is the Doppler shift?  

Answer:  v=100km/h= 27.7 m/s, c= 3 10 8 m/s, 𝜃𝜃 = 0:

Δ𝑓𝑓 =
𝑣𝑣𝑓𝑓𝑐𝑐 cos𝜃𝜃

𝑠𝑠
=

27.7 2.1 10 9

3 10 8 ≈ 194 Hz

If the angle is 𝜃𝜃 = 45:

Δ𝑓𝑓 =
𝑣𝑣𝑓𝑓𝑐𝑐 cos𝜃𝜃

𝑠𝑠
=

27.7 2.1 10 9 cos(45)
3 10 8 ≈ 138 Hz

θ
v=100 km/h



Multipath Channel
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Most channel consists of many paths
◦ Direct paths
◦ Reflections, transmissions, diffraction, …
◦ LOS and NLOS paths

Each path has different
◦ Delay
◦ Phase
◦ Gain



Baseband Model
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TX sends complex baseband 𝑥𝑥(𝑡𝑡)
RX receives complex baseband:

𝑟𝑟 𝑡𝑡 = �
ℓ=1

𝐿𝐿

𝛼𝛼ℓ𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋ℓ+𝜙𝜙ℓ𝑥𝑥(𝑡𝑡 − 𝜏𝜏ℓ)

= �
ℓ=1

𝐿𝐿

𝑔𝑔ℓ𝑅𝑅−𝑗𝑗𝜔𝜔𝑐𝑐𝜋𝜋ℓ𝑥𝑥(𝑡𝑡 − 𝜏𝜏ℓ)

◦ 𝐿𝐿 paths
◦ Gain and phase:  𝛼𝛼ℓ,𝜙𝜙ℓ
◦ Complex gain:  𝑔𝑔ℓ = 𝛼𝛼ℓ𝑅𝑅𝑗𝑗𝜙𝜙ℓ
◦ Delay:  𝜏𝜏ℓ
◦ Doppler:  𝜔𝜔ℓ = 2𝜋𝜋𝑓𝑓𝑚𝑚𝑐𝑐𝑡𝑡 cos𝜃𝜃ℓ

(𝛼𝛼ℓ, 𝜏𝜏ℓ,𝜙𝜙ℓ)



Time-Varying  Frequency Response
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Multipath channel:   𝑦𝑦 𝑡𝑡 = ∑ℓ=1𝐿𝐿 𝑔𝑔ℓ𝑅𝑅𝑗𝑗𝜔𝜔ℓ𝑡𝑡𝑥𝑥(𝑡𝑡 − 𝜏𝜏ℓ)

Consider exponential input:  𝑥𝑥 𝑡𝑡 = 𝑅𝑅𝑗𝑗𝜔𝜔𝑡𝑡

Output is:  𝑦𝑦 𝑡𝑡 = 𝐻𝐻 𝑡𝑡,𝜔𝜔 𝑥𝑥 𝑡𝑡
Time-varying frequency response

𝐻𝐻 𝑡𝑡,𝜔𝜔 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑅𝑅𝑗𝑗(𝜔𝜔ℓ𝑡𝑡−𝜔𝜔𝜋𝜋ℓ)

May also write:  𝐻𝐻 𝑡𝑡,𝑓𝑓 = 𝐻𝐻(𝑡𝑡,2𝜋𝜋𝑓𝑓)



Example with Two Paths
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To simplify understanding, consider two path model

𝑟𝑟 𝑡𝑡 = ℎ1𝑅𝑅𝑗𝑗𝜔𝜔1𝑡𝑡𝑢𝑢 𝑡𝑡 − 𝜏𝜏1 + ℎ2𝑅𝑅𝑗𝑗𝜔𝜔2𝑡𝑡𝑢𝑢(𝑡𝑡 − 𝜏𝜏2)

Time-varying response:
𝐻𝐻 𝑡𝑡,𝜔𝜔 = ℎ1𝑅𝑅𝑗𝑗(𝜔𝜔1𝑡𝑡−𝜔𝜔𝜋𝜋1) + ℎ2𝑅𝑅𝑗𝑗(𝜔𝜔2𝑡𝑡−𝜔𝜔𝜋𝜋2)

Power gain:
𝐿𝐿 𝑡𝑡,𝜔𝜔 = 𝐻𝐻 𝑡𝑡,𝜔𝜔 2 = ℎ1𝑅𝑅𝑗𝑗(𝜔𝜔1𝑡𝑡−𝜔𝜔𝜋𝜋1) + ℎ2𝑅𝑅𝑗𝑗(𝜔𝜔2𝑡𝑡−𝜔𝜔𝜋𝜋2) 2

𝜏𝜏1,𝜃𝜃1

𝜏𝜏2, 𝜃𝜃2



Variation in Time
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Plot shows 𝑓𝑓max =10 Hz,  
𝜃𝜃1 = 0, 𝜃𝜃2 = 180,
ℎ2 = 10−0.05Δℎ2,  ℎ1 2 + ℎ2 2 = 1

 Fixed frequency  𝜔𝜔0

 Look at time variations 𝐿𝐿(𝑡𝑡,𝜔𝜔0)
 Rate of variation depends on Doppler spread:

Δ𝑓𝑓 = 𝑓𝑓𝑚𝑚𝑐𝑐𝑡𝑡 cos𝜃𝜃1 − cos𝜃𝜃2
 Size of variation depends on spread of gains:

 Avg:  ℎ1 2 + ℎ2 2

 Min:  ℎ1 − ℎ2 2:  Destructive interference
 Max:  ℎ1 + ℎ2 2: :  Constructive interference

 With equal path gains, there are nulls

𝐿𝐿 𝑡𝑡,𝜔𝜔0 = ℎ1𝑅𝑅𝑗𝑗(𝜔𝜔1𝑡𝑡+𝜙𝜙1) + ℎ2𝑅𝑅𝑗𝑗(𝜔𝜔2𝑡𝑡+𝜙𝜙2) 2



Variation in Frequency

36

 Fixed frequency  𝑡𝑡0
 Look at time variations 𝐿𝐿(𝑡𝑡,𝜔𝜔0)
 Period of variation depends on delay spread:

Δ𝑓𝑓 =
1

𝜏𝜏2 − 𝜏𝜏1
 Size of variation depends on spread of gains:

 Avg:  ℎ1 2 + ℎ2 2

 Min:  ℎ1 − ℎ2 2

 Max:  ℎ1 + ℎ2 2

𝐿𝐿 𝑡𝑡0,𝜔𝜔 = ℎ1𝑅𝑅𝑗𝑗(𝜔𝜔𝜋𝜋1+𝜙𝜙1) + ℎ2𝑅𝑅𝑗𝑗(𝜔𝜔𝜋𝜋2+𝜙𝜙2) 2

Plot shows
𝜏𝜏1 = 0, 𝜏𝜏2 = 200 ns,
ℎ2 = 10−0.05Δℎ2,  ℎ1 2 + ℎ2 2 = 1



Fading
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 Over time and frequency, paths can either
 Constructively interfere ⇒ Peaks
 Destructively interfere ⇒ Nulls

 Process is called fading
 Intermittent channel quality 

 One of the most significant challenges in wireless
 Later, we will discuss how to overcome fading



Narrowband Assumption
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For two path model:
𝐿𝐿 𝑡𝑡0,𝜔𝜔 = ℎ1𝑅𝑅𝑗𝑗(𝜋𝜋1𝜔𝜔+𝜙𝜙1) + ℎ2𝑅𝑅𝑗𝑗(𝜋𝜋2𝜔𝜔 +𝜙𝜙2) 2

Period of variation in 𝑓𝑓 = 𝜏𝜏1 − 𝜏𝜏2
Suppose that 𝑢𝑢 𝑡𝑡 has bandwidth 𝑊𝑊

Narrowband assumption valid when  𝜏𝜏1 − 𝜏𝜏2 ≪ 𝑊𝑊−1

 𝜏𝜏1 − 𝜏𝜏2 is the delay spread

Represents max difference in path lengths



OFDM Time-Frequency Grid
OFDM modulation:  Widely-used method
◦ 4G and 5G cellular systems
◦ Many 802.11 standards

Divide channel into sub-carriers and OFDM symbols
◦ Resource element:  One time-frequency point

Data is transmitted is an array:  𝑋𝑋 𝑛𝑛, 𝑘𝑘
◦ 𝑘𝑘 = OFDM symbol index
◦ 𝑛𝑛 = subcarrier index
◦ One complex value  per RE.
◦ Called a modulation symbol

See digital communication class
◦ We will also review again when we discuss equalization

39

Subcarrier 
spacing
Δ𝑓𝑓 = 1

𝑇𝑇

OFDM symbol
𝑇𝑇𝑠𝑠𝑠𝑠𝑚𝑚

Time

Fr
eq

ue
nc

y



OFDM Channel with Fading
OFDM channel acts as multiplication:
Under normal operation (delay spread is contained in CP):

𝑌𝑌 𝑘𝑘,𝑛𝑛 = 𝐻𝐻 𝑘𝑘,𝑛𝑛 𝑋𝑋[𝑘𝑘,𝑛𝑛]

OFDM channel gains can be computed from the multi-path components

𝐻𝐻 𝑘𝑘,𝑛𝑛 = �
ℓ=1

𝐿𝐿

𝐸𝐸ℓ𝑅𝑅−2𝜋𝜋𝑗𝑗 (𝑇𝑇𝑘𝑘𝜋𝜋ℓ+𝑆𝑆𝑐𝑐𝜋𝜋ℓ+𝜙𝜙ℓ)

◦ 𝑇𝑇 = OFDM symbol time, 𝑆𝑆 = sub-carrier spacing
◦ For each path:  𝑓𝑓ℓ =Doppler shift, 𝜏𝜏ℓ =Delay, 𝜙𝜙ℓ = phase of path, 𝐸𝐸ℓ = path received energy

40

RX symbols Channel TX symbols



Summary
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Doppler to a single path causes a phase rotation
◦ Gain is constant

With multiple paths, gain varies
◦ Constructive and destructive interference of paths

Described by a time-varying frequency response 𝐻𝐻 𝑡𝑡, 𝑓𝑓
◦ Variations is time due to Doppler spread
◦ Variations in frequency due to delay spread



In-Class Exercise:  OFDM Channel Response

42



Outline
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Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

Statistical Descriptions of Fading



Random Path Statistical Model
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RX signal has many random, independent paths

Time-varying frequency response:

ℎ 𝑡𝑡, 𝑓𝑓 =
1
𝐿𝐿
�

ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑅𝑅2𝜋𝜋𝜋𝜋(𝑡𝑡𝜋𝜋𝑑𝑑 cos 𝑗𝑗ℓ+𝜋𝜋𝜋𝜋ℓ)

◦ Assume (𝑔𝑔ℓ,𝜃𝜃ℓ) i.i.d.
◦ Path gains:  𝑔𝑔ℓ are zero mean E 𝑔𝑔ℓ 2 = 𝐿𝐿

By Central Limit Theorem, ℎ(𝑡𝑡) is a complex Gaussian
◦ ℎ 𝑡𝑡, 𝑓𝑓 ~𝐴𝐴𝐶𝐶(0,𝐿𝐿)
◦ Independent real and imaginary components
◦ Variance ⁄𝐿𝐿 2 for real and imaginary components

𝑔𝑔ℓ, 𝜏𝜏ℓ,𝜃𝜃ℓ

Direction of motion



Rayleigh Distribution
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ℎ~𝐴𝐴𝐶𝐶(0,𝐿𝐿) complex Gaussian

𝑅𝑅 = |ℎ| magnitude

Represents amplitude gain

Has Rayleigh distribution:
◦ PDF:  𝑝𝑝 𝑟𝑟 = 2𝑟𝑟

𝐿𝐿
𝑅𝑅− ⁄𝑟𝑟2 𝐿𝐿

◦ CDF:  P 𝑅𝑅 ≤ 𝑟𝑟 = 1 − 𝑅𝑅− ⁄𝑟𝑟2 𝐿𝐿

◦ Second moment:  𝐸𝐸𝑅𝑅2 = 𝐿𝐿

Probability distribution



Exponential Distribution
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Consider Rayleigh fading complex gain ℎ~𝐴𝐴𝐶𝐶(0,𝐺𝐺𝑐𝑐𝑎𝑎𝑎𝑎)

Magnitude 𝑅𝑅 = |ℎ| is Rayleigh
𝐿𝐿 𝑅𝑅 ≥ 𝑟𝑟 = 𝑅𝑅 �−𝑟𝑟2 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎

Instantaneous gain 𝐺𝐺 = ℎ 2 has exponential distribution
𝐿𝐿 𝐺𝐺 ≥ 𝑔𝑔 = 𝐿𝐿 𝑅𝑅 ≥ 𝑔𝑔 = 𝑅𝑅 ⁄−𝑎𝑎 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎

◦ Average gain is 𝐸𝐸 𝐺𝐺 = 𝐸𝐸 ℎ 2 = 𝐺𝐺𝑐𝑐𝑎𝑎𝑎𝑎

For channel, 𝐺𝐺 represent power gain (in linear scale)
◦ 𝑦𝑦 = ℎ𝑥𝑥 ⇒ 𝑠𝑠 2

𝑡𝑡 2 = 𝐺𝐺



Example Calculation
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Suppose the channel experiences Rayleigh fading.   

What is probability gain will be 15 dB below the average?
◦ Called a 15 dB fade.

Answer:
◦ Gain is 15 dB below average when 𝐺𝐺 ≤ 10−0.1(15)𝐸𝐸 𝐺𝐺
◦ From exponential distribution:

𝐿𝐿 𝐺𝐺 ≤ 𝛽𝛽𝐸𝐸 𝐺𝐺 = 1 − 𝑅𝑅− ⁄𝛽𝛽𝛽𝛽 𝐺𝐺 𝛽𝛽 𝐺𝐺 = 1 − 𝑅𝑅−𝛽𝛽

◦ For small 𝛽𝛽,  𝐿𝐿 𝐺𝐺 ≤ 𝛽𝛽𝐸𝐸 𝐺𝐺 ≈ 𝛽𝛽
◦ For 15 dB fade,  𝛽𝛽 = 10−0.1(15) ≈ 0.032.



Winner-3GPP-Spatial Cluster Model 
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Paths arrive in clusters.  

Clusters have subpaths (also called rays)

Each cluster has:
◦ Center angle and a statistical model for the delay and angular spread
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Jakes Model
Many widely-used statistical models in practice

Some specify models with no delay spread
◦ Angular spread only
◦ Creates a time-varying gain ℎ(𝑡𝑡)
◦ No variation in delay
◦ Use one of these models per cluster

Jakes model:
◦ Angles uniform from [0,2𝜋𝜋]

Asymmetric Jakes:
◦ 𝜃𝜃 ∈ [𝜃𝜃1,𝜃𝜃2] uniform

Angular spread:
◦ Arises from diffuse reflection

49

Jakes
Angles unif [0,2𝜋𝜋]

Asym Jakes
cos𝜃𝜃 ∈ [0.9,1]

Asym Jakes
cos𝜃𝜃 ∈ [−0.1,0.1]

Gain (dB) Angle (rads)



Fading Models in MATLAB
Comm Toolbox:
◦ Efficient, general fading models

Create a comm.RayleighChannel object

Run the channel to get:
◦ Output and gain

50



Doppler Spectra
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Consider statistical model:

ℎ 𝑡𝑡,𝑓𝑓 =
1
𝐿𝐿
�

ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑅𝑅2𝜋𝜋𝜋𝜋(𝑡𝑡𝜋𝜋𝑑𝑑 cos 𝑗𝑗ℓ+𝜋𝜋𝜋𝜋ℓ)

◦ Paths are i.i.d. and 𝑔𝑔ℓ are zero mean

In limit of large 𝐿𝐿, ℎ 𝑡𝑡,𝑓𝑓 is a Gaussian random process

Auto-correlation:
𝑅𝑅 𝛿𝛿𝑡𝑡, 𝛿𝛿𝑓𝑓 = 𝐸𝐸 ℎ 𝑡𝑡,𝑓𝑓 ℎ∗ 𝑡𝑡 + 𝛿𝛿𝑡𝑡,𝑓𝑓 + 𝛿𝛿𝑓𝑓

= 𝐿𝐿 𝐸𝐸 𝑅𝑅2𝜋𝜋𝜋𝜋(𝛿𝛿𝑡𝑡𝜋𝜋𝑑𝑑 cos 𝑗𝑗ℓ+𝛿𝛿𝜋𝜋𝜋𝜋ℓ)

Describes how correlated the process is over time and frequency



Coherence Time and Frequency
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Consider time varying freq response 𝐻𝐻 𝑡𝑡, 𝑓𝑓

Coherence time:    
◦ Max interval Δt where 𝐻𝐻 𝑡𝑡, 𝑓𝑓 ≈ 𝐻𝐻 𝑡𝑡 + Δ𝑡𝑡, 𝑓𝑓
◦ How fast channel changes in time
◦ Related to Doppler spread

Coherence bandwidth
◦ Max interval Δf where 𝐻𝐻 𝑡𝑡, 𝑓𝑓 ≈ 𝐻𝐻 𝑡𝑡, 𝑓𝑓 + +Δ𝑓𝑓
◦ How fast channel changes in frequency
◦ Related to delay spread

Critical for many procedures:
◦ Channel estimation, tracking, coding, ARQ, …
◦ More on this later

Realization of a Jakes 
process with 1/fmax = 
0.1 sec



Fading at Different Scales
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Source of 
variation

Mathematical 
model

Typical spatial 
coherence

Typical temporal 
coherence

Small-scale fading 
from  multi-path 
fading

Rayleigh or Rician
distribution

~ 1 wavelength 15 ms
(v=10m/s, 
fc=2GHz)

Large-scale fading 
from variations in 
shadowing

Lognormal
distribution

10 to 100 m 1 to 10 sec

Path loss 
variations

Path loss 
exponent

100 m or larger 10 sec

Different fading processes and variations occur at much different time / space scales

Methods to combat these are different



Time Scales Illustrated
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