Multi-Path Fading

WIRELESS SHORT COURSE

PROF. SUNDEEP RANGAN

Fading

From the Introduction of a classic text:

There are two fundamental aspects of wireless communication that make the problem challenging and interesting.

... First is the phenomenon of fading ...

...Second ...there is significant interference ...

Learning Objectives

- Describe up and down-conversion in time- and frequency-domain
- Describe the steps in the DAC and ADC including the filtering
- Compute a discrete-time and continuous-time base equivalent channels from the passband
- Simulate fractional delays and gains in the sampled data
- Describe and simulate a deterministic multi-path wireless channel
- Compute the time-varying frequency response given the path parameters
- Describe a statistical model for multi-path fading
- Approximately compute the coherence time and bandwidth given a channel

Outline

Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

□ Statistical Descriptions of Fading

Up- and Downconversion

RF communication systems:

- Information occurs and is processed in complex baseband
- Transmitted and received in real passband

Up and down-conversion: Shift center frequency of signals

□Also called mixing

Up and Down-Conversion in Time Domain

Complex baseband:

- \circ Two real signals, $u_I(t)$, $u_Q(t)$
- Or, one complex signal:

 $u(t) = u_I(t) + ju_Q(t)$

Real passband: $u_p(t)$

Note: downconversion needs:

- Multiplication by 2
- Low pass filtering

Mixing in Frequency Domain

Discrete IQ Mixer

http://www.markimicrowave.com/Mixers/IQ_Quadrature-IF_Double-Balanced/IQ-0318.aspx \Box LO = "local oscillator" = square or sine wave at f_c

 \Box I1, I2 = I and Q inputs.

• Generally, lowpass

 \Box RF = passband output centered at f_c

Datashe et	RF [GHz]	LO [GHz]	IF [MHz]	Conversi on Loss [dB]	Image Rejectio n [dB]	Amplitud e Deviatio n [dB]	Phase Deviation [Degrees]	Isolations L-R [dB]	Isolations L-I [dB]
<u>IQ-0318</u>	3 to 18	3 to 18	DC to 500	7	22	0.75	10	40	20

Baseband Equivalent Channel

□ Filtering at passband equivalent to complex baseband filter

Assuming downconversion filter is ideal:

- $H_b(f) = H_p(f + f_c)$ for $|f| \le \frac{W}{2}$
- Simply shift $H_p(f)$ to the left by f_c .

Important Special Case: Delay

10

 \Box Delay, gain in passband \Rightarrow delay, gain and phase rotation in baseband

Proof:

- Passband frequency response is: $H_p(f) = Ae^{-2\pi j f \tau}$
- Baseband frequency response: $H_b(f) = H_p(f + f_c) = Ae^{-2\pi j(f_c + f)\tau}$
- Equivalent impulse response: $h_b(t) = Ae^{-2\pi j f_c \tau} \delta(t \tau)$

Synchronization and Delay Errors

- $\,\circ\,$ Estimate the arrival time of the signal $\,\hat{\tau}\,$
- $^\circ~$ Starts processing remainder of signal starting at $\hat{ au}$
- Equivalent to shifting received signal ahead in time by $\hat{\tau}$: $y(t) = r(t + \hat{\tau})$
- $\,\circ\,$ Remaining time error: $\Delta \tau = \tau \hat{\tau}$

Later, we will discuss:

 $^{\circ}$ How to estimate au (synchronization) and how to correct for gain and phase error (equalization)

In-Class Problem

Up and down-conversion, Problem 1

Consider a system with the following parameters

```
bw = 20e6; % bandwdith
pl = 80; % path loss (dB)
tau = 200e-9; % timing error
% TODO: Plot the real component of the frequency response
% over the bandwidth. Assume phase = 0 at DC.
% Use 1024 frequency points
```


Frequency Errors

13

Oscillators at TX and RX always have some mismatch. To analyze, suppose:

- Upconversion: $s_p(t) = Re(s(t)e^{j\omega_1t+\theta_1})$,
- Downcoversion: $r(t) = LPF(2s_p(t)e^{-(j\omega_2 t + \theta_2)})$

LO error leads to time-varying gain: r(t) = g(t)s(t), $g(t) = e^{j((\omega_0 - \omega_1)t + (\theta_0 - \theta_1))}$

• Frequency and phase shift

In-Class Problem

Up and down-conversion, Problem 2

Suppose a link has the following parameters:

Outline

Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

□ Statistical Descriptions of Fading

Typical Digital Communication Path

□All modern communication systems TX and RX digital samples

Transmitter: DAC + filtering with $p_{tx}(t)$. Filtering used to:

Suppress out of band emissions

Receiver: Filters with $p_{rx}(t)$ then performs ADC. Filtering plays two roles:

- Reduces noise
- Remove out-of-band signals before ADC. (i.e. Anti-aliasing)

□ Filter design discussed in digital communications class

Review of DTFT

Given discrete-time sequence s[n]

• Real or complex

Discrete-time Fourier Transform: $S(\Omega) = \sum_n s[n]e^{-j\Omega n}$

Inverse DTFT: $s[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\Omega) e^{j\Omega n} d\Omega$

DNote $S(\Omega)$ is always a 2π periodic signal

 $^\circ~$ Can take integral for inverse DTFT on any period of $2\pi~$

 $\Box \Omega$ is the discrete frequency. Units is radians per sample.

 \Box For finite length signals and finite number of Ω , can be computed via FFT

Review in your signals and systems class

Common DTFT Pairs

Time domain <i>x</i> [n]	Frequency domain X _{2π} (ω)
$\delta[n]$	$X_{2\pi}(\omega)=1$
$\delta[n-M]$	$X_{2\pi}(\omega)=e^{-i\omega M}$
$\sum_{m=-\infty}^\infty \delta[n-Mm]$	$\begin{split} X_{2\pi}(\omega) &= \sum_{m=-\infty}^{\infty} e^{-i\omega Mm} = \frac{2\pi}{M} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{M}\right) \\ X_{\sigma}(\omega) &= \frac{2\pi}{M} \sum_{k=-(M-1)/2}^{(M-1)/2} \delta\left(\omega - \frac{2\pi k}{M}\right) \text{odd } M \\ X_{\sigma}(\omega) &= \frac{2\pi}{M} \sum_{k=-M/2+1}^{M/2} \delta\left(\omega - \frac{2\pi k}{M}\right) \text{even } M \end{split}$
u[n]	$egin{aligned} X_{2\pi}(\omega) &= rac{1}{1-e^{-i\omega}} + \pi \sum_{k=-\infty}^\infty \delta(\omega-2\pi k) \ X_o(\omega) &= rac{1}{1-e^{-i\omega}} + \pi \cdot \delta(\omega) \end{aligned}$
$a^n u[n]$	$X_{2\pi}(\omega)=rac{1}{1-ae^{-i\omega}}$
e^{-ian}	$egin{aligned} X_o(\omega) &= 2\pi \cdot \delta(\omega+a), & ext{-}\pi < a < \pi \ X_{2\pi}(\omega) &= 2\pi \sum_{k=-\infty}^\infty \delta(\omega+a-2\pi k) \end{aligned}$

See Wikipedia

$\cos(a \cdot n)$	$egin{aligned} X_o(\omega) &= \pi \left[\delta \left(\omega - a ight) + \delta \left(\omega + a ight) ight], \ X_{2\pi}(\omega) \ &\triangleq \sum_{k=-\infty}^\infty X_o(\omega - 2\pi k) \end{aligned}$
$\sin(a\cdot n)$	$X_{o}(\omega)=rac{\pi}{i}\left[\delta\left(\omega-a ight)-\delta\left(\omega+a ight) ight]$
$\mathrm{rect}igg[rac{n-M/2}{M}igg]$	$X_o(\omega) = rac{\sin[\omega(M+1)/2]}{\sin(\omega/2)} \ e^{-rac{i\omega M}{2}}$
$\operatorname{sinc}(W(n+a))$	$X_o(\omega) = rac{1}{W} \operatorname{rect} \Bigl(rac{\omega}{2\pi W} \Bigr) e^{i a \omega}$
$\operatorname{sinc}^2(Wn)$	$X_o(\omega) = rac{1}{W} \operatorname{tri} \Bigl(rac{\omega}{2\pi W} \Bigr)$

Discrete-Time Systems

$$s[n] \longrightarrow H(\Omega) \longrightarrow r[n]$$

Consider discrete-time LTI system

Time-domain: Characterized by impulse response h[n] $r[n] = h[n] * s[n] = \sum_{k} h[k]s[n-k]$

Frequency-domain: Characterized by frequency response $H(\Omega)$ $R(\Omega) = H(\Omega)S(\Omega)$ $R(\Omega) = \sum_{n=1}^{\infty} e^{-i\Omega n} e^{-i$

•
$$R(\Omega) = \sum r[n]e^{-j\Omega n}, \ r[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} R(\Omega)e^{j\Omega n} d\Omega$$

DT Equivalent Channel

$$s[n]$$
 $DAC \rightarrow p_{tx}(t) \rightarrow h_{chan}(t) \rightarrow p_{rx}(t) \rightarrow ADC \rightarrow r[n]$ = $s[n] \rightarrow H(\Omega) \rightarrow H(\Omega)$

20

Discrete-time baseband equivalent channel:

- \circ Describes equivalent mapping from s[n] to r[n]
- Includes effects of TX and RX filtering and continuous-time baseband channel

Band-limited filters:

- Suppose one of P_{rx} , P_{tx} is bandlimited to $|f| < \frac{1}{2T}$ (no out-of-band emissions or aliasing)
- Then, discrete-time equivalent channel reduces to:

$$H(\Omega) = \frac{1}{T} P_{rx} \left(\frac{\Omega}{2\pi T} \right) P_{tx} \left(\frac{\Omega}{2\pi T} \right) H_{chan} \left(\frac{\Omega}{2\pi T} \right) \text{ for } |\Omega| < \pi$$

Ideal Filtering

$$s[n] \longrightarrow DAC \longrightarrow p_{tx}(t) \longrightarrow h_{chan}(t) \longrightarrow p_{rx}(t) \longrightarrow ADC \longrightarrow r[n] = s[n] \longrightarrow H(\Omega) \longrightarrow H(\Omega)$$

Suppose sample rate $f_s = \frac{1}{T}$

"Ideal" TX and RX filter :

•
$$p_{tx}(t) = p_{rx}(t) = \frac{1}{\sqrt{T}} \operatorname{Sinc}\left(\frac{t}{T}\right)$$

- In frequency domain: $P_{rx}(f) = P_{tx}(f) = \sqrt{T} \operatorname{Rect}(fT)$
- Also called "brick wall" filter
- Most practical filters match this well
 - $\circ~$ Up to gain and delay

Ideal Filtering

Assume TX and RX filters are ideal

Theorem: DT equivalent channel is the re-scaled continuous-time channel

$$H(\Omega) = H_{chan}\left(\frac{\Omega}{2\pi T}\right)$$

• Frequency f mapped to $\Omega = 2\pi T f$

Special Case: Delay

	Passband	Continuous-Time Baseband	Discrete-Time Baseband
Impulse response	$h_p(t) = A\delta(t-\tau)$	$h_{chan}(t) = A e^{-j\omega_c \tau} \delta(t-\tau)$	$h[n] = Ae^{-j\omega_c \tau} sinc\left(\frac{\tau n}{T}\right)$
Frequency response	$H_p(f) = A e^{-j2\pi f\tau}$	$H_{chan}(f) = A e^{-j\omega_c \tau} e^{-j2\pi f \tau}$	$H(\Omega) = A e^{-j\omega_c \tau} e^{-j\Omega \tau/T}$

Suppose passband has a gain and delay.

Then discrete-time frequency-domain: gain and linear phase rotation over frequency

 $\,\circ\,$ Rotates $2\pi\, au/T$ radians every period

In discrete-time time-domain: gain, constant phase rotation and sinc filter with delay

Sinc Filter with Integer Delays

Suppose we have ideal filtering and passband has delay and gain

From previous slide, r[n] = h[n] * s[n], $h[n] = Ae^{-j\omega_c \tau} sinc\left(\frac{\tau n}{T}\right)$

Special case 1: No delay $\tau = 0$:

 $\circ h[n] = A\delta[n] \Rightarrow r[n] = As[n]$

Baseband channel introduces only gain

Special case 2: Integer delays $\tau = kT$:

- $h[n] = A\delta[n-k] \Rightarrow r[n] = As[n-k]$
- Baseband channel introduces gain and integer shift

Ex: Suppose sample rate is 20 MHz and signal is delayed by 400 ns.

• Integer delay in discrete-time signal is
$$\frac{20}{0.4} = 50$$
 samples

Sinc Pulses with Fractional Delay

- $\Box h[n] = A e^{-j\omega_c \tau} sinc\left(\frac{\tau n}{T}\right)$
- Causes blurring over multiple samples
- Inter-symbol interference
- □ Will need equalization to correct
 - More on this later

Simulating Fractional Delays in MATLAB

Code on previous slide was create with DSP toolbox

```
tau = [0,8,8.2,8.5]; % Delays in fractions of a sample
```

```
% Create a fractional delay object from the DSP toolbox
% We select the Farrow interpolation, which is a fast
% and accurate method. It is important to select the options
% correctly
dly = dsp.VariableFractionalDelay(...
    'InterpolationMethod', 'Farrow','FilterLength',8,...
    'FarrowSmallDelayAction','Use off-centered kernel');
```

```
% Create delays of the sequence
y = dly.step(x,tau);
```

Creates T x D matrix Row *i* is delayed by $\tau(i)$

In-Class Problem: Fractional Delays on Constellations

```
% TODO: Generate nb=1024 bits using the randi command.
% TODO: Modulate the bits using QPSK with the gammod command
& :
   x = gammod(bits,...);
옿
8
% Set the 'InputType' to 'bit' in the gammod command
% TODO: Create a delay object
   dlv = dsp.VariableFractionalDelay(...)
-З-
% You can follow the demo
% TODO: Shift the symbols x by delays
% tau = 10,10.1 and 10.5 samples
% TODO: Plot the received constellations
% Use the subplot command so the constellations for the three
% delays occur on different windows
```


Outline

Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

□ Statistical Descriptions of Fading

Doppler Shift

□ With mobile velocity, propagation delay changes with time.

In complex baseband signal: $r(t) = \alpha e^{-j\omega_c \tau(t)} u(t - \tau(t)) = \alpha e^{j2\pi(\Delta f t - d_0 f_c)} u(t - \tau(t))$

□Velocity results in Doppler shift: $\Delta f = vt \cos \theta / c$

Change in frequency, although not gain.

Sample Problem

□Suppose the carrier frequency is f_c =2.1GHz, and a car moves towards a base station at 100 km/h. What is the Doppler shift?

Answer: v=100km/h= 27.7 m/s, c= $3(10)^8$ m/s, $\theta = 0$:

$$\Delta f = \frac{v f_c \cos \theta}{c} = \frac{(27.7)(2.1)(10)^9}{3(10)^8} \approx 194 \text{ Hz}$$

 \Box If the angle is $\theta = 45$:

$$\Delta f = \frac{v f_c \cos \theta}{c} = \frac{(27.7)(2.1)(10)^9 \cos(45)}{3(10)^8} \approx 138 \,\mathrm{Hz}$$

Multipath Channel

Figure 3.1: A Single Reflector and A Reflector Cluster.

□ Most channel consists of many paths

- Direct paths
- Reflections, transmissions, diffraction, ...
- $\circ~$ LOS and NLOS paths

Each path has different

- \circ Delay
- Phase
- Gain

Baseband Model

TX sends complex baseband x(t)

RX receives complex baseband:

$$\begin{aligned} r(t) &= \sum_{\substack{L \ \ell=1}}^{L} \alpha_{\ell} e^{-j\omega_{c}\tau_{\ell} + \phi_{\ell}} x(t - \tau_{\ell}) \\ &= \sum_{\substack{\ell=1}}^{L} g_{\ell} e^{-j\omega_{c}\tau_{\ell}} x(t - \tau_{\ell}) \end{aligned}$$

- L paths
- $\,\circ\,$ Gain and phase: $\,lpha_\ell,\phi_\ell\,$
- Complex gain: $g_\ell = \alpha_\ell e^{j\phi_\ell}$
- $^{\circ}$ Delay: au_{ℓ}

• Doppler:
$$\omega_{\ell} = 2\pi f_{max} \cos \theta_{\ell}$$

Figure 3.1: A Single Reflector and A Reflector Cluster.

Time-Varying Frequency Response

D Multipath channel: $y(t) = \sum_{\ell=1}^{L} g_{\ell} e^{j\omega_{\ell} t} x(t - \tau_{\ell})$

Consider exponential input: $x(t) = e^{j\omega t}$

Output is: $y(t) = H(t, \omega)x(t)$

Time-varying frequency response

$$H(t,\omega) = \sum_{\ell=1}^{L} g_{\ell} e^{j(\omega_{\ell}t - \omega\tau_{\ell})}$$

 $\Box May also write: H(t, f) = H(t, 2\pi f)$

Example with Two Paths

To simplify understanding, consider two path model

$$r(t) = h_1 e^{j\omega_1 t} u(t - \tau_1) + h_2 e^{j\omega_2 t} u(t - \tau_2)$$

Time-varying response:

$$H(t,\omega) = h_1 e^{j(\omega_1 t - \omega \tau_1)} + h_2 e^{j(\omega_2 t - \omega \tau_2)}$$

Power gain:

$$P(t,\omega) = |H(t,\omega)|^{2} = \left|h_{1}e^{j(\omega_{1}t-\omega\tau_{1})} + h_{2}e^{j(\omega_{2}t-\omega\tau_{2})}\right|^{2}$$

Variation in Time

- Fixed frequency ω_0
- Look at time variations $P(t, \omega_0)$
- Rate of variation depends on Doppler spread: $\Delta f = f_{max}(\cos \theta_1 - \cos \theta_2)$
- Size of variation depends on spread of gains:
 - Avg: $|h_1|^2 + |h_2|^2$
 - Min: $(|h_1| |h_2|)^2$: Destructive interference
 - Max: $(|h_1| + |h_2|)^2$: Constructive interference
- With equal path gains, there are nulls

$$P(t,\omega_0) = \left| h_1 e^{j(\omega_1 t + \phi_1)} + h_2 e^{j(\omega_2 t + \phi_2)} \right|^2$$

Plot shows f_{max} =10 Hz, $\theta_1 = 0, \theta_2 = 180,$ $h_2 = 10^{-0.05\Delta} h_2, |h_1|^2 + |h_2|^2 = 1$

Variation in Frequency

- Fixed frequency t_0
- Look at time variations $P(t, \omega_0)$
- Period of variation depends on delay spread:

$$\Delta f = \frac{1}{\tau_2 - \tau_1}$$

- Size of variation depends on spread of gains:
 - Avg: $|h_1|^2 + |h_2|^2$
 - Min: $(|h_1| |h_2|)^2$
 - Max: $(|h_1| + |h_2|)^2$

$$P(t_0, \omega) = \left| h_1 e^{j(\omega \tau_1 + \phi_1)} + h_2 e^{j(\omega \tau_2 + \phi_2)} \right|^2$$

Plot shows

$$\tau_1 = 0, \tau_2 = 200 \text{ ns},$$

 $h_2 = 10^{-0.05\Delta} h_2, |h_1|^2 + |h_2|^2 = 1$

Fading

- Over time and frequency, paths can either
 - Constructively interfere \Rightarrow Peaks
 - Destructively interfere \Rightarrow Nulls
- Process is called fading
 - Intermittent channel quality
- One of the most significant challenges in wireless
- Later, we will discuss how to overcome fading

Narrowband Assumption

For two path model:

$$P(t_0, \omega) = \left| h_1 e^{j(\tau_1 \omega + \phi_1)} + h_2 e^{j(\tau_2 \omega + \phi_2)} \right|^2$$

 \Box Period of variation in f = $|\tau_1 - \tau_2|$

 \Box Suppose that u(t) has bandwidth W

 \Box Narrowband assumption valid when $| au_1 - au_2| \ll W^{-1}$

 $\Box | au_1 - au_2|$ is the delay spread

□ Represents max difference in path lengths

OFDM Time-Frequency Grid

□OFDM modulation: Widely-used method

- $\circ~$ 4G and 5G cellular systems
- Many 802.11 standards

Divide channel into sub-carriers and OFDM symbols

• Resource element: One time-frequency point

Data is transmitted is an array: X[n, k]

- $\circ k = \mathsf{OFDM}$ symbol index
- n = subcarrier index
- One complex value per RE.
- Called a modulation symbol

See digital communication class

• We will also review again when we discuss equalization

OFDM Channel with Fading

OFDM channel acts as multiplication: Under normal operation (delay spread is contained in CP):

 $Y[k,n] = H[k,n] \quad X[k,n]$ \swarrow RX symbols Channel TX symbols

OFDM channel gains can be computed from the multi-path components

$$H[k,n] = \sum_{\ell=1}^{L} \sqrt{E_{\ell}} e^{-2\pi j \left(Tkf_{\ell} + Sn\tau_{\ell} + \phi_{\ell}\right)}$$

40

• T = OFDM symbol time, S = sub-carrier spacing

• For each path: f_{ℓ} =Doppler shift, τ_{ℓ} =Delay, ϕ_{ℓ} = phase of path, E_{ℓ} = path received energy

Summary

Doppler to a single path causes a phase rotation

• Gain is constant

□With multiple paths, gain varies

Constructive and destructive interference of paths

 \Box Described by a time-varying frequency response H(t, f)

- $\circ~$ Variations is time due to Doppler spread
- Variations in frequency due to delay spread

In-Class Exercise: OFDM Channel Response

```
scs = 120e3; % sub-carrier spacing
nsc = 12*60; % number of sub-carriers
tsym = 1e-3/14/8; % OFDM symbol period
nsym = 1000; % number of symbols to plot
% Channel parameters
fc = 73e9; % carrier frequency
v = 10; % RX velocity in m/s
dly = [0,20,50]'*1e-9; % Delay in sec of the paths
theta = [0,pi/4,pi]'; % Path AoA relative to motion
gaindB = [0,-3,-5]'; % gain of each path in dB
```

```
% Random initial phase of the gains
npath = length(dly);
phi = rand(npath,1)*2*pi;
```

% TODO: Compute the Doppler shift of each path

% TODO: Compute the OFDM channel H(k,n)

% TODO: Plot the power 10*log10 |H(k,n)|^2. % Use the imagesc function. Label the axes across % time in ms and frequency in MHz

Outline

Review of Up- and Downconversion

Review of TX and RX Sampling

Doppler and Multi-Path Fading

Statistical Descriptions of Fading

Random Path Statistical Model

RX signal has many random, independent paths

Time-varying frequency response:

$$h(t,f) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} g_{\ell} e^{2\pi i (tf_d \cos \theta_{\ell} + f\tau_{\ell})}$$

- Assume $(g_{\ell}, \theta_{\ell})$ i.i.d.
- $\,^{\circ}\,$ Path gains: $\,g_\ell\,$ are zero mean ${\rm E}|g_\ell|^2=P$

 \Box By Central Limit Theorem, h(t) is a complex Gaussian

• $h(t,f) \sim CN(0,P)$

- Independent real and imaginary components
- \circ Variance P/2 for real and imaginary components

Rayleigh Distribution

- $\Box h \sim CN(0, P)$ complex Gaussian
- $\Box R = |h|$ magnitude
- Represents amplitude gain

Has Rayleigh distribution:

- PDF: $p(r) = \frac{2r}{P}e^{-r^2/P}$
- CDF: $P(R \le r) = 1 e^{-r^2/P}$
- Second moment: $ER^2 = P$

Exponential Distribution

Consider Rayleigh fading complex gain $h \sim CN(0, G_{avg})$

 $\Box Magnitude R = |h| is Rayleigh$

$$P(R \ge r) = e^{-r^2/G_{avg}}$$

Instantaneous gain $G = |h|^2$ has exponential distribution $P(G \ge g) = P(R \ge \sqrt{g}) = e^{-g/G_{avg}}$

• Average gain is
$$E(G) = E|h|^2 = G_{avg}$$

□ For channel, *G* represent power gain (in linear scale)

•
$$y = hx \Rightarrow \frac{|y|^2}{|x|^2} = G$$

Example Calculation

□Suppose the channel experiences Rayleigh fading.

What is probability gain will be 15 dB below the average?
 Called a 15 dB fade.

Answer:

• Gain is 15 dB below average when $G \leq 10^{-0.1(15)}E(G)$

• From exponential distribution:

$$P(G \le \beta E(G)) = 1 - e^{-\beta E(G)/E(G)} = 1 - e^{-\beta}$$

- For small β , $P(G \leq \beta E(G)) \approx \beta$
- $^{\circ}$ For 15 dB fade, $\beta=10^{-0.1(15)}\approx0.032.$

Winner-3GPP-Spatial Cluster Model

From 3GPP SCM-132

□ Paths arrive in clusters.

Clusters have subpaths (also called rays)

Each cluster has:

• Center angle and a statistical model for the delay and angular spread

Jakes Model

Fading Models in MATLAB

Comm Toolbox:

• Efficient, general fading models

Create a comm.RayleighChannel object

□Run the channel to get:

Output and gain

```
% Create Doppler models
 nmod = 3;
 dopMod = cell(nmod,1);
 dopMod{1} = doppler('Jakes');
 dopMod{2} = doppler('Asymmetric Jakes', [0.9 1]);
 dopMod{3} = doppler('Asymmetric Jakes', [-0.1 0.1]);
 % Simulate the channel gains for each model
for i = (1:nmod)
     chan = comm.RayleighChannel(...
         'SampleRate', fsym, 'AveragePathGains', 0, ...
         'MaximumDopplerShift', fdmax,...
         'DopplerSpectrum', dopMod{i}, ...
         'PathGainsOutputPort', true);
     [y, gain] = chan.step(x);
```


Doppler Spectra

Consider statistical model:

$$h(t,f) = \frac{1}{\sqrt{L}} \sum_{\ell=1}^{L} g_{\ell} e^{2\pi i (tf_d \cos \theta_{\ell} + f\tau_{\ell})}$$

 $\,^\circ\,$ Paths are i.i.d. and g_ℓ are zero mean

In limit of large L, h(t, f) is a Gaussian random process

Auto-correlation:

$$R(\delta t, \delta f) = E[h(t, f)h^*(t + \delta t, f + \delta f)]$$

= $P E\{e^{2\pi i(\delta t f_d \cos \theta_\ell + \delta f \tau_\ell)}\}$

Describes how correlated the process is over time and frequency

Coherence Time and Frequency

Consider time varying freq response H(t, f)

Coherence time:

- Max interval Δt where $H(t, f) \approx H(t + \Delta t, f)$
- $\,\circ\,$ How fast channel changes in time
- Related to Doppler spread

Coherence bandwidth

- Max interval Δf where $H(t, f) \approx H(t, f + +\Delta f)$
- How fast channel changes in frequency
- Related to delay spread
- Critical for many procedures:
 - Channel estimation, tracking, coding, ARQ, ...
 - $\circ~$ More on this later

Fading at Different Scales

Source of variation	Mathematical model	Typical spatial coherence	Typical temporal coherence
Small-scale fading from multi-path fading	Rayleigh or Rician distribution	~ 1 wavelength	15 ms (v=10m/s, fc=2GHz)
Large-scale fading from variations in shadowing	Lognormal distribution	10 to 100 m	1 to 10 sec
Path loss variations	Path loss exponent	100 m or larger	10 sec

Different fading processes and variations occur at much different time / space scales

Methods to combat these are different

Time Scales Illustrated

Figure 3.8: Combined Path Loss, Shadowing, and Narrowband Fading.

