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Learning Objectives

Assuming CSI-R and CSI-T, describe the diagonalization of a MIMO channel
o Compute the virtual directions and their SNRs

L Compute the capacity for a MIMO channel using diagonalization
° Narrowband and wideband

L Mathematically formulate the power allocation problem and find optimal power allocations

L Describe linear receivers, identify the main blocks and compute their capacity
o Zero forcing and LMMSE

L Describe reference signals for MIMO channel estimation in 4G and 5G systems

L Compute optimal statistical pre-coders and compute the capacity
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Excellent Text for This Section

L1Some material in this section is from this recent text

FOUNDATIONS OF QProvides excellent:

o Information theoretic background

o Practical guidelines for implementation

o Up-to-date examples with issues for mmWave

LWe only cover a small section
o Single user MIMO

o Many derivations are left for the text
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Outline

‘Spatial Multiplexing with CSI-T and CSI-R

JPower Allocation and Rank Selection

Spatial Multiplexing with CSI-R Only
Channel Estimation and CSI-R
LCSI-T Feedback and Statistical Pre-Coding
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Spatial Multiplexing

[ Many environments have multiple spatial paths
o LOS, reflections, diffraction, ...

U Spatial multiplexing concept
o Transmit separate information streams on different paths

Uincreases degrees of freedom

Requires:
° Channel rank r = K where K is the number of streams
o In particular, N, N, = K
o Also need sufficient power for the K streams
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MIMO History

UEarly research:
o ArrayComm 1991
o Paulraj and Kailath, initial patent on SDMA
o Foschini and others, initial capacity estimates, 1996
o Bell Labs prototype, 1998

LJCommercialization in LANs
o Began study in 2003.

o First appeared in 802.11n 2009

L Commercialization in cellular:
o 4G systems, approximately 2004
o 5@G systems: Integral component for support for mmWave
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MIMO Narrowband Capacity

W Consider narrowband MIMO channel from previous lecture:
r=Hx + n, w~CN (0, NyI)
o H € CNr*Nt Channel matrix

T
°o X = (xl, ...,th) : signals to the TX antennas

QTX power constraint: ||x||? < E, x

A 4

v

o Total energy constraint on all antennas

TX array

(This section: make two critical assumption:
o TX and RX knows H and N, exactly (called CSI-T and CSI-R)

o We will relax these later
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Applying Transforms with the SVD

Take reduced SVD of the channel: H = UXV*

o ¥ = diag(oy, ..., 0y) l

o r =rank(H) N v * J B be r U* N
TX and RX apply transforms

o TX transform: x = Vs (also called a pre-coder) TX transform RX transform

o RX transform: z = U™r I p
UTheorem: The channel from s to z is diagonal: J

Z
[ z=2Xs+d, d~ CN(0,NylI,) ] S y -e——

UCreates r independent channels:
Zi = 0;Sj + di' di’"CN(O, NO)

TANDON SCHOOL NY
NYU OF ENGINEERING WLEls!




Proof of the Diagonalization

Consider channel from s to z: v

coz=Ur=U0'U2Vx+U'w=2Xs+d l

S X r VA

CNoise: — v H re— U ——

o Since w~CN (0, NyI) and d = U*w,

d is also Gaussian

o E(d)=UE(w) =0 I

o var(d) = U'var(w)U = NyU*U = Ny, d
Hence, transforms diagonalize the channel: s J z

— I e——

z=Xs+d, d~CN(,NI,)

NYU
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Virtual Channels

L Diagonalizing the channel creates r virtual channels

Zi = 0;Sj + di, diNCN(O, NO)

dNumber of virtual channels = rank (H)
o = Number of orthogonal paths in the environments

L Correspond loosely to the physical paths
o Suppose spatial signature of each physical path is orthogonal

° In this case, directions of virtual channel = direction of physical path
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Shannon Capacity

LWith diagonalizing transform:

Zi = 0;Sj + di, di ~ CN(O, NO) d
Assume TX allocates power uniformly across all r virtual channels
o . 2 ] ﬂ S VA
Each channel gets E|s;]| — energy per symbol s e

o This is not optimal. We will look at improved allocations laer

UTotal capacity (bits per degree of freedom)

" Vi
C = z log2<1+0 —>=z log2(1+ )
No i=1

° A = 0 = eigenvalues of H*H = eigenvalues of H'H

4iEx _ SNR on virtual path i
0

°Yi=
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Log-Det Form of the Shannon Capacity

The Shannon capacity is commonly written in an alternate form:

Ey
C =log,det| I +——H'H

TNy
Proof:
° Take eigenvalue decomposition: H*H = VDV*, D = diag(44, ..., Ay,)
°o leta = Sz
T'NO
o det(I + aH*H) = det[Vdiag(l + aly, ..., 1+ aANt)V*] = det diag(l + aly, ..., 1+ axth)
= H(l + a/h)

o Hence log, det(I + aH*H) = Y log(1 + al;)
o But this is the capacity from the previous slide
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SNR Per Antenna

To understand benefit of spatial multiplexing, compare to a SISO system

|H l]l Ex

No

LChannel from TX j to RX i has SNR ———

W Definition: The SNR per antenna is the average single antenna SNRs:

5= Z Hy | = = —— ||H 2
NN, N, NN, N

2
o |H|IF = Zilel'jl =“Frobenius” norm of H
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Frobenius Norm=Sum of Eigenvalues

NYU

OKey property: The Frobenius norm ||H||Z = ¥; A; where 4; = eigenvalues of Q = H*H

UProof:

o Diagonal entries of Q: Q;; = Zj|Hl-j
Hence, ||H||2 = X, Q;; = Tr(Q) = “Trace” = sum of diagonals
Property of trace: Tr(AB) = Tr(BA)

Take digonalization: @ = VDV®, D = diag(1y, ..., An,)
Therefore: ||H||% = Tr(Q) = Tr(VDV*) = Tr(V*VD) = Tr(D) = Y A;

2

[e]

[e]

[e]

[¢]

LHence, SNR per antenna is sum of SNR per virtual path divided by N,.N;

r r
1 E, 1 E, 1

IHIRE = Y A2 === )
N:New "N NpNe& ™ No o NpNeda''

S =
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SNR Per Antenna and Physical Path SNRs

QConsider channel with L paths H = Y5_, gye'%¢ u,.(Q)ul ()

LAssume:
° Phases 6, are uniform in [0,27] since they vary with time and frequency

2
o lu,(Q))|I* = N, and ||ut(ﬂf;)|| = N; (spatial signatures only include phase rotations)
o Element gains are included in the complex gains

2
QEach physical path £ has an SNR per antenna of s, = 'gi\l[—Ex
0
dTheorem: Taking average over phases
NO NTNt NO =1

WConclusion: SNR per antenna = sum of SNRs of each physical path per antenna
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Virtual Path SNRs and Path SNRs

QConsider channel with L paths H = Y5_, gye'%¢ u,.(Q)ul ()

JAssume paths are orthogonal and normalized such that
> ur (DU, () = Np-8p and up (Qp)u, () = NeSey
o This will occur when the paths arrive and depart in orthogonal directions

UTheorem: Under the above normalization assumptions, there will be L virtual paths with SNR

_ _ B
Ye = SeN Ny = N, |g¢]*N;- Ny

QProof: From Unit 8, we saw the eigenvalues of H*H are A, = |g;|*N,-N.

> Hence, the virtual path SNRis y, = A;Ex

U Conclusion: For orthogonal directions, MIMO provides an SNR gain of N,.N; on each path
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Coding Architectures

L Spatial multiplexing creates r virtual channels
o Each channel has SNRy; = iﬁi
No'r

U Two possible transmission methods

LSingle codeword:
o Encode bits for rN symbols into one codeword
o Codewords sees varying SNR across symbols
o Adjust MCS for ergodic capacity

UMultiple codewords:
o Divide bits into r streams
o |In each stream, encode bits for N symbols into a codeword
o Each codewords sees a constant SNR
o Set MCS for each codeword to match SNR
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Encoder SNR y; Decoder

SNR ¥,

Multiple codewords

Encoder SNR y4 Decoder
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SNR v,

N —
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Capacity with Practical Codes

dShannon capacity is C = Yj_; log,(1 + %

8i H | SNR y4
its per c a.mne us'e | | | | >
o Can be achieved with optimal single or multiple codeword method .
To account for practical codes, usually assume a model: SNRy;
— ] ——

r T
C = z R (%) = Z min{p,, 4, @ log, (1 + ﬁé) }
i=1 =1

° Pmax = Max spectral efficiency, based on modulation
o a = bandwidth loss
o 3 = SNR loss

Typical values for cellular systems: ppqx = 4.5, = 0.6, =1
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Examples

LWe will illustrate the calculations in this unit in two cases

Carrier f, 28 GHz 2.3 GHz

TX Array 4x4 URA 4x1 ULA Typical gNB

RX Array 8x1 ULA 4x1 ULA Typical UE

Num paths 20

Relative path gains Exponential, Mean = 10 dB

AoA Az Unif[-60,60] Unif[-180,180] Low-dim case has rich scattering
AoD Az Unif[-30,30] Unif[-180,180]

AoA and AoD El Unif[-20,20] Unif[-20,20]
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Eigenvalue Distribution

NYU

Plot: SNR per virtual path y;
o Channel matrix normalized to SNR per antenna =0 dB

o Max gain in any one path is N.N;

ULow-dim case
o Up to 4 paths
o Eigenvalues = evenly spread due to rich scattering

High-dim case
o Up to 8 paths
o Eigenvalues concentrated in a few dominant paths
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Rate vs SNR

dFor each SNR per antenna:
o Rescale channel matrix

High-dim array

Ll
o

o Compute rate assuming uniform distribution across all streams ol o
o Assume rate per stream: R(s) = min{p,,4,, @ log,(1 + Bs) } ol
° Pmax =45 a=06,=1 -
T 0
QAlso plotted: o sl
o SISO rate with SNR per antenna “
10
See significant possible gain ol
° But not a fair comparison . ____/ | _ |
o Should compare against beamforming Y QReeramenmars
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Outline

Spatial Multiplexing with CSI-T and CSI-R

‘Power Allocation and Rank Selection

Spatial Multiplexing with CSI-R Only

Channel Estimation and CSI-R
LCSI-T Feedback and Statistical Pre-Coding
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Spatial Multiplexing vs Beamforming

LBeamforming:

o Places all energy on virtual path with strongest SNR SNRy,
o Achieves rate Rgr = R(y1)

1 — —
o If codes achieve capacity, Rgr = log,(1 +y;)
USpatial multiplexing:
o Transmit energy evenly on 7 virtual paths SNR 2
Vi Vi r
° Rsy = X R(T) = Xlog(1+ = 1 I — s
T

UTo compare, consider two extreme cases: 1
o Equal SNRs y; = y for all i -
° Single dominant SNR y4
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Spatial Multiplexing vs Beamforming
Equal SNR streams

UFirst, suppose all virtual directions have same power

BF

4 Xx4.5 bps/Hz

. 16 - |=—— Spat mux|
cy; =y, i=1,..,r .
o BF rate: Rgr = R(y) 12}
o Spatial mux rate Rgy; = TR (g) -l
Low SNR regime (power limited) j | 4.5 bps/Hz
° Repy = Rpp. No gain :
High SNR regime (bandwidth limited) SEIEEE W R
° R¢pyy = TRgp. Gainof r.
o Spatial multiplexing adds degrees of freedom Simulation:
Spatial multiplexing is like adding bandwidth r = 4 streams

R(y) = min{4.5,0.5log,(1+vy) }
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Spatial Multiplexing vs Beamforming
Single Dominant Stream

LNow suppose that there is a single dominant virtual direction
oy;=0fori=2,..,7

LBF rate: Rgr = R(y41)
LSpatial mux rate Ry = R (%)

QSpatial multiplexing with uniform power allocation is worse! o
o Waste energy in directions with no SNR 1

-10 -5 0 5 10 15 20 25 30 35
SNR [dB]
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Power Optimization and Water-Filling

We can allocate the power optimally

ULet x; = fraction of power allocated to stream i

T T
maxz R(y;x;) st. x; =0, Z x; <1
i=1 i=1
Some special cases:

o Beamforming: Place all power in best stream: x; =1, x; =0fori > 1

Optimize the rate:

: . 1
o Uniform power allocation: x; = -

dWhen R(y) = log,(y), optimal solution is given by “water-filling” (see text)
o x; = max{ ¢ —%,O}
l
o Constant c set to satisfy constraint that }}/_, x; < 1

o Allocate energy inversely proportional to SNR
o Some streams are allocated zero energy
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Power Allocation

Consider sub-optimal strategy
o Uniformly allocate to top r streams

Plot to the right: ”
o Synthetic channel from before

20

L A A
SLabhbESLL
T R A A

SL4ahbALLE

o We see that r = 1 (BF) optimal at lower SNRs
o At higher SNRs, multi-streams become useful

Rate [bps/Hz]

-20 -10 0 10 20 30 -20 -10 0 10 20 30
SNR per Antenna SNR per Antenna
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Optimal Rank Selection

Water Filling is difficult for a general rate function

L Consider sub-optimal strategy " Optimal ra,te ;
o Uniformly allocate to top r streams
ULeft plot:
o Best rate among all possible ranks s g
z %
URight plot: g :
o Best rank 83

dWe see rank increases with SNR

=20 =10 o 10 20 30 =20

SNR per Antenna

W TANDON SCHOOL
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Water-Filling

JAssume the rate per stream is given by Shannon’s formula:

52
r =log,(1+—E))
No
. 1
dMaximize R = — foilog(l+yix) st Xiqxi=1
2
°o Y = S;Vﬂ = SNR on virtual stream i if all power is allocated to stream

0

OTake Lagrangian: L = Y_;[log(1 +y;x;) + Ax; — u; x;] — 4
°u; =20

U Take derivative: - L= )-— Ui

+YiXi

" 1
QFor positive streams: 1+ y;x; = ¢ = x; = max(0,c — ?)
l
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Example: Water-Filling vs Rank Selection

L Compare two strategies: % | ?‘
Waterfilling ‘Waterfilling
| Rank salection 6.5 | | = Rank salection 1
OWater-filling: Optimal allocation 25 b| 1 |
|

(JRank selection:

55

20+ o
E
. . . - 3 s
o Uniform power among best r directions 2 £ °
215 §-15
L Comparison: E -
. T . L Q
o Gain from waterfilling is small " 35
o Only helps at very high SNR 3
25 J
|:| " A - ke - 2 NS . - d
=10 o 10 20 30 10 Q 10 20 40
SNR per Antenna SNR per Antenna
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Outline

Spatial Multiplexing with CSI-T and CSI-R

JPower Allocation and Rank Selection

‘Spatial Multiplexing with CSI-R Only

Channel Estimation and CSI-R
LCSI-T Feedback and Statistical Pre-Coding
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Challenges in Obtaining CSI

L Above analysis assumes TX and RX have CSI

w
LCSI-R: RX knows H
o Generally possible with sufficient reference signals X -
o Reference .S|gnals add 0\{erhead | ST — o H ® > CSIR
° Overhead is reasonable if number of streams <« coherence time 1y knows H RX knows H

QCSI-T: TX knows H
o Requires feedback from RX or measurements in reverse direction
o With small-scale fading, H changes rapidly
° Instantaneous H is generally difficult

L Later, we will discuss how to obtain both

UThis section: Understand effect of lacking CSI-T
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Problems in Lacking CSI-T

dWe will see that lacking CSI-T causes two problems

w
UTX power mis-allocation
o TX does not know virtual path directions x r
o TX may send data into directions with poor SNR CSI-T ' H @— CSIR
o Wastes TX energy TX knows H RXknows H

Uinter-stream interference
° Streams end up “mixed” at RX (Each r; depends on multiple x;)
o RX must separate the streams
o Can be mitigated with equalization or joint decoding
o But equalization or joint decoding adds complexity and may incur a penalty loss
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Information Theoretic Formulation

L Consider transmission over multiple symbols: r,, = Hx,, + w,,, w,~CN(0, NyI)
on=1,..,N, N =Block length = oo

QTX encodes M = 2RN messages, R = bits per symbol

o Denote messages x;m),m =1,..,.M

. : E
Transmission energy assumption: E(x,x;) < N—xl
t

o Assumes TX energy is uniform over all N; antennas
o We assume this since the TX does not know the optimal direction
o We will see this loss can be significant

RX can perform any decoding. No computational limits

2
> For example, optimal decoding M = argminY._, ||rn — nglm) ||
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Information Theoretic Capacity

Qinformation theoretic model: r, = Hx,, + w,,, w,~CN(0, N,I)

. . E
o TX power constraint: E(x,x},) < N—xI
t

LTheorem [Teletar,~2003]:
Under optimal decoding with the block length N — oo the capacity is:

Ey

C =logdet(I + aH*H), a = NoN,

Capacity of Multi-antenna Gaussian Channels”

EMRE TELATAR
Lucent Technologies Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07574, USA
telatar @lucent.com
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Proof of the Teletar’s Result

dChannel model: » = Hx + w, w~CN (0, NyI)

dFrom Shannon’s Theorem, capacity is C = maxI(r; x) = max[H (1) — H(r|x)]
o Max is over distributions on x

OFact 1: For any Gaussian z~CN (u, Q) entropy is H(z) = log det(meQ)
LFact 2: For z with E(zz*) < Q entropy is bounded H(z) < log det(meQ)

dGiven x, r~CN(Hx, NyI) = H(r|x) = logdet(meNyI) = N;log(meN,)
Ex
NoN¢

QIf E(xx*) < =1 then E(rr*) < NoI + =HH* = No(I + aHH"), a =
t t

Hence H(r) < N;log(meN,) + logdet(I + aHH")

LCapacity is C < logdet(I + aHH")

LGet C = logdet(I + aHH™) by using Gaussian distribution
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Comparison to CSI-T Case

We saw that if TX allocates energy TX power uniformly on all r virtual directions, capacity is
Yx Ey
C =lo det<I+—H*H), ==

L Capacity with TX uniformly on all N; TX antennas is: C = log det (I + %H*H)
t

L Conclusion: With optimal decoding:
o Can obtain capacity identical to TX uniformly on N, directions

UThere is a TX power mis-allocation loss:

° Loss ofNL in SNR when N; > r. This is especially large when N; > N,
t

o No water-filling. Hence, within the rank r virtual streams, power is not allocated optimally
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TX Mis-Allocation Loss Example
Low Dimensional Array Case

USimulation:
o N =4,N, =4
o Random channel with rich scattering |
> AoA and AoD uniform on [0,27] 12

e\ atEzfilling
Uniform

LTX mis-allocation loss is minimal

LWith rich scattering and small num antennas:
o All directions have good SNR

o Uniform power allocation is optimal 4r

-10 -5 0 5 10 15 20 25 30
SNR per Antenna
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TX Mis-Allocation Loss Example
High Dimensional Array Case

30

dSimulation from before:
> N, = 16,N, = 8
o Random channel

Waterfilling
No CSIT

dMax rank is 7 = min(N,,, N;) = 8

Rate [bps/Hz]

At high SNR, the loss is NL = %

t

LAt lower SNRs, the loss is larger
o Wastes significant energy on poor rank directions

-10 -5 0 5 10 15 20 25 30
SNR per Antenna
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Loss from Inter-Stream Interference

W Prior capacity result required optimal decoding:

2
> Search over all possible codewords M = argmin Y.V_, ||rn — Hx,&m) ”

L Computationally impossible for even moderate block size

dWe consider a simple linear equalization scheme:
o Linear equalization followed by symbol demodulation and channel decoding

This method introduces a second loss due to inter-stream interference
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Linear Equalization Concept

Symbol Channel

" Spatial EQ demod decoder

X r z LLRs

A 4
A

Most practical systems use linear spatial equalization
o Perform linear transform z = Fr to approximately invert H and recover x
° Followed by symbol demodulation on the symbols z to create LLRs
o LLRs then used by the channel decoder

Uin contrast, we call the optimal decoder the joint decoding
> Since it jointly performs the symbol demodulation and channel decoding
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Linear Zero-Forcing Equalizer

L Estimate x via a least-squares optimization w
z = argmin||r — Hx||?
X
. . . . X r V4
QSolution is called the zero-forcing equalizer: —— H |@—— F |,

[ = Fzr = (H'H)"'H* ]

o The reason for the name will be clear later

U Note for the inverse to exist we need N, = N;
o More specifically, we need rank(H) > N;
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Zero-Forcing Equalizer Analysis

QSuppose we use ZF equalizer z = F 41, F,r = (H*H) 1H* w
UThen channel from x to z is .

o z=Fr=HH HHx+w)=x+d, d=(HH) H'w ") B e F z
LCreates N; parallel channels

°© Zl-=xl-+dl-,i= 1,...,Nt

(Noise covariance matrix is:
o var(d) = (H*H) " *H*var(w)H(H*H)™! = Ny(H*H)"*H*H(H*H)™! = N,(H*H)™!

2=

LISNR on each channel: Since E|x; "y
t

[ ZF _ Ex 1 Q (H*H)_l }
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Problems with Zero Forcing

CISNR on each stream with zero forcing is:  y#* = NE;I Qi Q=(HH!
tiNo Yii

UFor inverse to exist, requires that N, = N;

LAlso, when eigenvalues of H*H are small, Q will blow up

LWhat is the optimal linear transform?
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Linear MMSE Equalization

Narrowband channelr = Hx +w, w~CN(0, NyI), w
LAssume
E X r Z
o AssumeE(xx*)=N—xIandE(x)=O ——— H |@—— F |,
t
o TX energy is % in each antenna
t

o Select F to minimize average error:
Ellx — Fr||? = E||lx — F(Hx + w)||?

L Optimal linear estimator from probability theory is

Z = FT‘, FLMMSE = a(aH*H + I)_lH*, a =
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Linear Equalizer: Interference + Noise

Narrowband channelr = Hx + w, w~CN(0, NyI), w

Equalized symbols: z = Fr
o For now, consider general linear equalizer F x r z

UHence: z = FHx + Fw and hence, per component

z; = [FH];x; + Z[FH]ijxj + [Fw];

1

Inter-stream Noise
interference

Desired signal

LLMMSE receiver: Decode x; from z; treating inter-stream interference as noise
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LMMSE: SINR

From previous slide:

S

Z; = [FH]iixi + z[FH]UX] + [FW]l
JEL! —»| H O F >

dOn channel i:
_ E
o Signal energy Eg;y = |[FH];;|? F);
o Interference energy: E;p; = %Zjii [[FH];;|?
t

> Noise energy: E,yise = Ny [F*F];;

LISINR on channel i:

o yLMMSE _ Esig
t EnoisetEint

NYU
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LMMSE SINR

dChannelr = Hx +w, w~CN(0,NyI), E(xx*) = %I
t

S

WConsider linear equalizer z = Fr x r z
UTheorem:
o With the LMMSE equalizer, F = F} 5, SINR per channel is:
1 E
LMMSE . 1 x
Vi =——1, Q= (aHH+I1) ", a =
[ l Qii NoN¢

122

. 1
o For any other linear transform F, y; < o0 1

UProof: Follows from long linear algebra.
o See text
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LMMSE vs. ZF

LAt high SNR, LMMSE — ZF:
o Recall FLMMSE = a(aH*H + I)_IH*,CK = Ex
NoN¢

o If H*H is invertible, asa = o, F;yysg = a(aH*H+1)"'H* > (H*H)"*H* = F 4

For ZF, there is no inter-stream interference:
° Recall z; = [FH]jx; + X il FH]ijx; + [Fw];
With F,pH = (H*H)"*H*H =1
Thus, [FH];; = 0 fori # j
Hence, ZF forces the inter-stream interference to zero. Hence, the name

[e]

[¢]

[e]

[e]

But ZF amplifies the noise term Fw

[e]

Linear MMSE optimally trades off noise and inter-stream interference
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LMMSE vs. Joint Decoding

We saw that with optimal joint decoding capacity is:

Cjoint = log, det(I + aH*H) = —log, det(Q), Q = (aH'H + I)_l
With LMMSE, capacity is:

Ne LMMSE Ne 1 Ne
CLmmsE = Z log,(1 +v; ) = Z log; (Q ) - Z 11082(Qii)
=1 ii 1=

EIFact: CLMMSE < Cjoint

U Proof:
o Linear algebra fact: for any matrix @ = 0, det(Q) < []; Q;;
o This fact follows from a Cholesky factorization Q = LL"

° Therefore, Cioint = — log, det(Q) = —log, [[; Q;; = —Z?Zl log,(Qii) = CLmmse
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LMMSE Loss: Low-Dim Case

Consider the low-dimensional example

o 4 x 4 MIMO with rich scattering " Watering |
o See parameters above Unif+LMMSE
14 Unif+ZF
LAt low SNRs: 2}
o LMMSE performs close to Joint decoding % ik
o LMMSE performs much better than ZF % al
<
LAt high SNRs: 6
o Joint decoding provides a small advantage al
o Gain of ~¥2 dB 51
o ZF performs close to LMMSE o . | | |
-10 -5 0 5 10 15 20 25 30
SNR per Antenna
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LMMSE Loss: High-Dim Case

Next consider the low-dimensional example

w
o Np=16and N, = 8
o See parameters above s X r
F o H @
ULinear equalization requires that Ny > r
o r = channel rank = number of virtual directions with significant SNR

o Otherwise, cannot recover x Pre-coder

dWhen N; > r, we need to perform pre-coding:
o Estimate the number, r, of TX streams to use (somehow)
o Pre-code x = Fs where s is r —dimensional

LAt the receiver perform decoding on pre-coded channel G = HF
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LMMSE Loss: High-Dim Case

UWe have N, = 16 and N,. = 8

30
dHence, some pre-coding is needed to use LMMSE ‘

Waterfilling
Pre-code + Joint
Pre-code + LMMSE
Pre-code + ZF

25 -

As an example, suppose we use random pre-coding
o Select r = 6 streams (num of significant evals) 20 -

o Take a r=random orthogonal methods %
S5¢
L After random pre-coding: g
o There is a significant loss. “
o Even with optimal joint decoding
o LMMSE and ZF have further losses 5[

W For high-dim arrays, some CSI-T is needed . | |
o TP H . . -10 -5 0 5 10 15 20 25 30
This is particularly important in mmWave SNR per Antenna
o Need to intelligently select directions
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Improving over LMMSE

dWe see that LMMSE decoding is not optimal
Qincurs a penalty due to inter-stream interference
Several possible advanced receivers can be used to reduce inter-stream interference:

LLMMSE + SIC:
o Successively decode each stream and cancel it out
o We describe this next

OTurbo / joint decoding methods:
° |teratively perform iterations of the decoder with the LMMSE
o Take the soft information of decoder to improve the LMMSE
o See text
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LMMSE + SIC: Transmitter

Encoders QTX:
° Divide data into N = N, streams

by X1

— o Get information bits by, ..., by
o Encode N codewords
b : o Modulate to create N symbols x4, ..., Xy
2 X2
S :

TX x; on TX antenna {

UChannel: r = Hx +w
o Can be written: r = hyx; + -+ hyxy +w
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NYU OF ENGINEERING WLEls!




LMMSE + SIC: First Stream

(dDecode stream 1:

Encoders LMMSE Decoders
estimators ~ o Perform LMMSE estimate of x; from r to get z;
by 'Di’ “1 __b,l o Signal z; will have interference from x,, ..., xy
24 ° Treat signals from x,, ..., Xy as noise
: ‘_—D‘i ° i i
b, %, Decode bits b; from LMMSE signal z;
_,|:|_, (symbol demod + decoder)
W Cancellation phase
o Re-encode estimated bits b,
o Subtract out X; togiver « r — h X,
&Eﬂ, o Ifx; =X, r =hyxy, + -+ hyxy +w
o Residual signal r has no contribution from x;!

NYU
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LMMSE + SIC: Subsequent Streams

Encoders LMMSE Decoders
estimators ~

w TANDON SCHOOL
NYU | onssioe:

O For stream 2:

o As stream 1, get LMMSE estimate of x,
LMMSE uses residual
Residual  has no contribution from x;

[e]

o

[e]

Interference is only X3, ..., Xy

o

Treat signals from x5, ..., Xy as noise

[e]

Decode bits b,, re-encode and subtract

(JContinue for all N streams

NYU
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LMMSE + SIC Performance

NYU

WTheorem: The capacity of the LMMSE SIC scheme is equal to optimal joint decoding

LProof: Use linear algebra to estimate SINR in each stream.
o With some linear algebra manipulations, you can show you end up at the same capacity

L Conclusions: LMMSE + SIC is a practical method to get optimal joint decoding

L Computational issues:
o Error propagation: If one stream is in error, you cannot subtract
o Difficult to merge with H-ARQ.
o Need large buffer for symbols. This buffer is the main bottleneck in practical systems

L Commercial systems:
o Have generally only used LMMSE+SIC on small numbers of antennas

o LMMSE without SIC is overwhelmingly dominant implementation method
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Outline

Spatial Multiplexing with CSI-T and CSI-R

JPower Allocation and Rank Selection

Spatial Multiplexing with CSI-R Only

‘Channel Estimation and CSI-R

LCSI-T Feedback and Statistical Pre-Coding
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Obtaining CSI-R

Assume TX has selected a pre-coder x = Vs

URX sees channel r[n] = Hx[n] + w[n] = HVs[n] + w[n] = Gs[n] + w(n]

QResults in a channel matrix G € CNr*Ns

o Ng= number of streams
o N,=number of RX antennas

For CSI-R, RX needs to estimate G
o RX does not need to know the pre-coder or the true channel!
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Reference Signals

Most systems use some form of reference signals

One set of reference signals for each TX stream
o Typically allocated on orthogonal resources

Example to right: One sub-frame in LTE
o Configuration for 4 TX “ports”
o Resource elements R; to R, are the RS for each port
o Each port has 2 to 4 REs per resource block

Qin a RS for stream k, we get a measurement:
r=g9ggxy +w
o Estimate g, = k —th column of G

TANDON SCHOOL
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Example: 5G NR DM-RS

LIDM-RS: Demodulation reference signals : 8
o Reference signals contained in downlink data 6 ‘

PDSCH/DMRS Only PDSCH/DMRS Only

o Shown in yellow squares 4 4

O Multiple layers in 5G:
o Each spatial layer is modulated to a “port”

0 0
01234567 8910M11213 012345867 88510111213

o One set of reference signal for each port Configuration Type 1

Reference signals are different ports are orthogonal 6 porte with double-symbol DMRS

o Bottom r|ght 2FD-OCC x 2 Combs x2 TD-OCC
RS for 8 port transmission an H -
o Each RS allocated on 12 REs sh| [ L1 na
o Each RE shared with 4 other ports g it =5
o Uses an orthogonal covering code (OCC) = - E;
-|||D T|D -;F Antenna
z z g Pors
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Overhead Issues

Suppose channel is constant over L = W, T.on Symbols
o W.,n = coherence bandwidth, T.,;, =coherence bandwidth

dWe need at least one reference symbol per transmitted stream in each coherence block

Overhead is %, Ngs = number of RS = Ns = number of streams

(Rate will be: R = (1 — %) Zlinsl log, (1 + 11[/_;

. N
° Training loss: 1 — %
Yi
Ns
o Bandwidth increase: Sum over i

o Power loss per stream:

UIn general, there is a tradeoff
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Information Theoretic Calculation

Hochwald and Hassibi, 2003

QSimplified block fading model
o Channel is constant over T uses
o Allocates RS in each block

LWith known channel
° Increasing num TX streams helps

L Without non-coherent channel
o Eventually hurts
o Spend more energy on training
o Less energy on data

TANDON SCHOOL
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Fig. 5. Capacity as a function of number of transmit aniennas A/ with p = 18 dB and NV = 12 receive antennas. The solid hne is optimized over T, for

P+ = pa = p (see (40)). and the dashed line is optimized over the power allocation with T = M (Theorem 3). The dash-dotted line is the capacity when the
receiver knows the channel perfectly. The maximum throughput 1s attained at M/ = 15.
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Outline

Spatial Multiplexing with CSI-T and CSI-R
LPower Allocation and Rank Selection
Spatial Multiplexing with CSI-R Only

L Channel Estimation and CSI-R

‘CSI-T Feedback and Statistical Pre-Coding
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Problems in Obtaining CSI-T

Channel state information is asymmetric

UReceiver:
o Can directly measure the channel

WTransmitter:
> No direct measurement

We discuss two possible methods:
° Precoding matrix feedback
o Reverse link reference signal with reciprocity

W TANDON SCHOOL
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Pre-coding Feedback

QFeedback method X CSI-RS RX
o TX sends CSI reference signals from each antenna

@
RX measures complex channel matrix é [ Estimate H ] D

RX computes optimal TX pre-coding matrix F

[e]

[¢]

o Also determines optimal rank
PMI F Compute TX
> RX sends TX pre-coder back to TX ) pre-coder and rank
o Pre-coder Matrix Indicator (PMI) k
o TX uses pre-coder in transmission TX pre-codes
P with F
QProblem: Pre-coded data
o Must feedback within time coherence i
° Many need to send freq-dependent pre-coders [ RX processing ]
o Potentially high overhead for fast varying channels I
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Statistical Pre-Coding

QConsider channel: H = Y5_. gye'?¢ u,.(Q)ul ()

Parameters vary in two different time scales:
o Small-scale variations: 8, vary with time and frequency. Difficult to track

o Large-scale variations: |g,| and Q} and Qf; vary with path gains. Slower varying. Easier to track

L Statistical pre-coding concept:

o Measure H on many different time and frequencies @
o Assume 6 varies but large-scale parameters are constant RX
arra
o Based TX pre-coding on statistics of H ° ° Y
o o
(]

R

o Also called long-term pre-coding .
()

TX array

NYU
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TX and RX Spatial Covariance Matrices

(Statistical pre-coding is typically based on the spatial covariance matrices
QConsider channel: H(8) = Y5_, g,e'% u,.(Q)ul (Q})

Define TX and RX spatial covariance matrices
Qix = E[H(B)'H(0)] € C"*Ne, Q. = E[H(6)H(6)*] € CNr>Nr

o Average is over small-scale parameters

QIf phases are i.i.d. 8,~Unif[0,27]:

L L
Q=N ) g Pu@ui @), Q=) lg:Pu@pu; @)
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Statistical Pre-Coding with Q..

LEstimate Q;,, = E[H(8)*"H(0)]

o Measured over many time and frequency instances

Take eigenvalue decomposition: Q. = VAV®, A =diag(Ay, ..., An,)
° Assume sorted Ay = -+ = Ay,

To transmit on r streams:
o Take TX pre-coder: F 4, = V[:, 1:7] corresponding to r largest eigenvalues
o Use pre-coding x = V|[:,1:r]s
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Instantaneous vs. Statistical Pre-Coding

U Statistical pre-coding:
o Select one Fy ¢y € CNt*": Maps r streams to N, antennas
> On each channel realization, see channel matrix: H(6)F gt 4;

o Obtain ergodic capacity: C = Ey llogz det(I + % ;th*(H)H(H)Fstat)l
0
Oinstantaneous pre-coding:
o Can select pre-coder F(8) for each channel realization

o Get ergodic capacity: C = Eg [logz det(I + %F*(B)H*(Q)H(Q)F(Q)]
0
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Example

UHigh-dim array case: N, = 16,N,. = 8
o Transmission rank r = 4 and 8

° Instantaneous selects best r directions in each realization. Statistical select r directions from Q,
o Uniform power allocation across all r

18 30
16
25
14
12+ 20 +
¥ ¥
% 10 =
a S5}
Q
g 3
X 4
6 10
4 L
s L
2r ——— Instanteous | | — Instanteous
Statisical Statisical
ol ; i I
E—’1!'.'} 5 0 5 10 15 20 25 30 -10 -5 0 5 10 15 20 25 30
SNR per antenna [dB] SNR per antenna [dB]
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