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Antenna Arrays

JAntenna arrays: Structure with multiple antennas
o At TX and/or RX

o Key to 5G mmWave and massive MIMO
dTwo key benefits

dBeamforming: This lecture
o Concentrate power in particular directions
o Increases SNR and may enable spatial diversity
o Requires arrays at either TX or RX

Spatial multiplexing: Next lecture
o Enables transmission in multiple virtual paths
o Increases degrees of freedom
o Requires multiple antennas at both TX and RX
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IBM 28 GHz array

32 element dual
polarized array

Sadhu et al, ISSCC 2017

Aurora C-Band Massive
MIMO array

64 elements, 5-6 GHz
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Multiple Receive Antennas

Single Input Multiple Output
o One TX antenna

o M RX antennas j

' SIMO

Transmit a scalar signal x(t)

(JReceive a vector of signals:

o 7(t) = (1, (©), oo, (1))

dWhat is the channel from x(t) to r(t)?

dWant channel in complex baseband

@ TANDON SCHOOL
NYU | Zroonssioo



Channel vs. Position

(To understand SIMO channel, consider single path channel
o AoA of 0 relative to z-axis

o Delay 7 to origin
o Gain A is constant close to origin

UTransmit signal s(t) and look at response at position x

(dConsider a RX position close to origin
° Blx| < f.A, B = bandwidth of s(t)

Phase rotation with displacement:
o Baseband response at x is (proof on next slide):

r(x, t) ~ \eanx sin@/A T‘(O, t))

J |

z s(t)

RX

o—
=
\

position

r(x,t)

| |
Phase rotation with x / T~ Response at x = 0
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Proof of Phase Rotation with Displacement

QDelay of path at x is: T(x) = 1y — = Sicn o
0
(Baseband response at x:
: . | i
r(x, t) — Ae—]wCTOBZTc]x sin Q/As(t —T(x)) X
UAlso, S(t = T(x)) ~ s(t—1p) ifBlt(x) — 7o <K 1 RX position

dBut, by assumption of small displacement:

BIr(x) — 7ol < ool = 21
(%) = 7ol <= — =77

QHence, r(x,t) ~ Ae J@cToe2mixsinb/Ag(p _ 1) = 2mixsin0/4y(( t)

K1
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Response for a ULA

L Uniform Linear array (ULA)
o M antenna positions spaced d apart

dTransmit signal s(t)
o Channel single path with AoA 8, gain A

QResponse at position: 7,,(t) = Ae /®Tog2mi(n=1dsin 6/Agp _ 7
ASIMO frequency response is:

eanOd sin6/A
h(0, w) = Ae /¥ : = g(w)u(h)

/ eZTL’j(M—l.)d sin /A

Scalar response at
x =0

Phase shifts across
elements
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Response Decomposition

dFor a single path channel, the frequency response has two components:
h(6, w) = g(w)u(o)

Scalar channel response, g(w)
—jwTo

> g(w) = Ae
o Response at a reference position in array

QVector spatial signature, u(6)
627rj0d sin@/A

> u(f) = :
eZEj(M—l)d sin@/A

o Vector of phase shifts from the reference
o Also called the steering vector (reason for name will be clear later)
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Array Response in 3D

dMany arrays place elements over 2D area

QUniform rectangular array (URA):
o M X N grid of elements

° Spaced dy and d,,

o Also called uniform planar array (UPA)

Uincident angle Q = (¢, 0)

o (Azimuth, elevation) or (azimuth, inclination)

USpatial signature:
° Umn(Q) = complex response to antenna (m, n)

° U, (Q) = exp [% (md, sin 6 cos ¢ + nd,, sin 6 sin qb)]
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Multiple Receive Antennas

Single Input Multiple Output
o One TX antenna

o M RX antennas

Transmit a scalar signal s(t) iTx j

JReceive a vector of signals: s(t)

o 7(t) = (1, (©), oo, (1))

Basic question: How do we decode signal x(t) from vector r(t)?
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Scalar Multiple Channel Problem

dConsider transmission of a single symbol x

JReceive a vector across M channels:

h1 nq hl
r=hx+n=< : >x+< )
hM nM j’

o x: Scalar TX symbol
o h: Vector of channel weights, n: Vector of noise

(dChannel can be from many different paths:
o multiple times, frequencies or antennas

Applies to a single degree of freedom (time or frequency)

JQuestion: How do we detect scalar x from vector r?
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Linear Combining

ARX model:r = hx + n

o 1input, M outputs
Linear combining: Take a linear combination hy i
z=w'r=Whx+wn = j h,
= ax + v - i

dw is called the weighting vector
o Called the beamforming vector for multiple antennas

Creates effective SISO channel:
o 1input x, 1 output symbol z
o Gain: a =w'h
o Noise: v =w'n
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Linear Combining Analysis

Linear combining: z=w'r = (W'h)x + w'n
° Gain: a =w'h

> Noise: v =w'n hq
JAnalysis: Let j
o E, = E|x|? = average symbol energy ™ h,

o Assume noise n,,~CN (0, Ny) (i.i.d. complex Gaussian noise)

dThen, after combining;
> Signal energy = |W*h|?E,
> Noise: v is Gaussian with E|v|? = ||w]|*N,
o SNRis:

_ |w*h|?E,

T Iwlizh,
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Maximum Ratio Combining

lw*h|?Ey
Iwll*Nog

dFrom previous slide: SNRisy =

: : . _ _ w*h|?E
dMaximum ratio combining: Select BF vector to maximize SNR: W = arg max |||w|||2Nx
w 0

dTheorem: The MRC weighting vector and maximum SNR is:

E
[ W =ch= yypc = ||h||2—x J
Ny

o Any constant ¢ # 0 can be used. Constant does not matter
o Align BF vector with the channel.

dProof:

o From Cauchy-Schwartz: |w*h|? = ||w||?||h||? cos 6
> Hence, y = ||h||? %cos@

0
o Maximized withcos@ =1=0 =0
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MRC Gain

QSNR with MRC:  Yype = ||h||2%
0

| e _ |hi|2Ex
SNR on channel i is: y; = ——
0
. _leM .. _ laM 2 Ex 1 2 Ex
Average SNRis: Yang = 1 Xil1 vi = 3 Zilalhil? 35 = L IRIZ 2

(UMRC increases SNR by a factor of M relative to average per channel SNR

QBeamforming gain = XMRE =

Yavg

JExample: Suppose average SNR per antenna is 10 dB.
o With M = 16 antennas and MRC, SNR = 10 + 101log,,(16) = 10 + 4(3) = 22 dB

o @ain increases significantly!
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RX Beamforming

JRecall model for a single path channel:

r=gou(Q)x+n
o u(Q) = spatial signature on that angle, Q= angle of arrival
° go = gain at reference position in array
o x =transmitted symbol

dRX beamforming is just linear combining across antennas
Z=W'r

o w is called the beamforming vector
> By convention, we assume ||w|| =1
o Geometric interpretation to be given shortly
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MRC Beamforming

Single path channel: r = gou(Q)x +n
JRX beamforming: z = w'r

SNR per antenna (before beamforming):

Exlgol? Ex|gol?
o = B0y () = Bl

o Assume u,, (1) includes only phase shifts

w*u(Q)|?
wiz Yo

QAMRC beamforming: w = cu(Q) andy = ||[u(Q)||?yo = My,

SNR after BF: y =

L Conclusions:
o Optimal (MRC) beamforming vector is aligned to the spatial signature
o Optimal SNR gain =M
o Linear gain with number of antennas
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Example Problem

dConsider a system
o TX power = 23 dBm with antenna directivity = 10 dBi

° Free space path loss d = 1000 m

(e]

Sample rate = 400 Msym/s
Noise energy = -170 dBm/Hz (including NF) SHE el ant.: o.59
&

RX antenna directivity = 5 dBi and 8 elements SHNE with MR- 5

(e]

(o]

Find SNR per antenna and SNR with MRC
dSolution: We get a9 dB gain!

plommi = f£=spl (dist, lamhda]ﬂ
EsNOAnt = ptx - plomni - 10%loglO(bw) - Enoise 4+ dirtx + dirrcx:;

% SHE with MREC
EsHNOMEC = EsNO + 1l0%logl0 (mantrx);
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MATLAB Phased Array Toolbox

QPowerful toolbox

Design and simulate phased drray signal progessing

JRoutines for: LR

® Watch video § Download a free trial

o Defining and visualizing arrays

[¢]

Computing beam patterns

[¢]

Beamforming
MIMO : 0
Radar |

[¢]

(o]
L
(=]

o

[ r3
h (=]
Normalized Power (dB)

W
=1

&
n

B
3

-45

AzD
El 0
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Example: Defining a ULA

dDefine and view the array Unifor Linear Aay (ULA

Can display array:

o Using viewArray command o’
@
> Or, manually o’
°]
@
%% Tniform Linear Array . .
% We first define a simple uniform linear array Eix
fc = 28e95; % fregquency
lambda = physcunski':;ghtjpeeﬂ']ffc:
dsep = 0.5*1ambda; % element spacing
nant = 8; ¥ Number of elements
arr = phased.ULA (nant, dsep) 0.02 3 ' ' '

00151 [o]
% View the array 001 .

viewhArray (ula, 'Title', 'Uniform Linear Array (ULA) ") 0.005 |
1 o
o
elemPos = arr.getElementPosition() ; -0.005 )
clf{'reset"): e )
plot (elemPos=s (1, :), elemPos(2,:), "o'): e :

002 ‘ ‘ ‘ ‘ . . . .
1 08 06 04 02 0 02 04 08 08
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Computing the Spatial Signature

dCompute the spatial signature with the SteeringVector object

% Create a steering vector object

; & 550 6
sv = phased.S5teeringVector ('SenscrArray',arr) ; - yd

\

L y p I I -
- . 0.8 |J’ ||I I||I |'| II"- I||
% Angles tCo compute the 5Vs o :ﬂ “ H H’ﬂ f
npts = 361; I '|I ||'| * | I
az = linspace(-180,180,npts); 0.4 ﬂ /| H bl | |

1 |
- |
el = zeros(l,nptsa): 2 2z ﬂ ” “ f f% | Jf |
= . . — |
ang [az: =1]: % | J| |H | A ﬂ (
a of IR [ I 7
2 Il L
% Matrix of steering vectors B ool | || || |f
% This is an nant X npts matrix in this case i

u = svifc, ang):

=
B
T

=
=]
T

% Plot of the real components | Hf ﬂﬂ| ﬂ \ﬂ|

plot (az, real{u)'): 08 hj! Hﬂ '\ h ) 1
grid on: 1 VY YUY | Al

xlabel {("Rzimuth (deg)") -200 .D 150 200
vlabel ('Eeal spatial sig'): Azimuth (deg)
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Example: Defining a URA

dDefine and view the array

0.01 T T T T T
(dUse the phased.URA class o). < . . . o
. . . 0.006 [~ =
(JCan compute steering vector similarly
0.004 -
s} ) (o] Q Q (o] (o] s}
% Construct the array LU B
nant = [4,8]: N oL i
dsep = 0.5%lambda;
arr = phased.URA (nant,dsep, "ArravHormal', "x"); 0.002 |- =
O o (o] Q (o] o o @]
% Plot the array. 000 ]
% You can also use, arr.viewhArrav() s/ i
elemPos = arr.getElementPosition() !
clf({'reset'); 0.008 - © o o o o o o o
plot (elemPos (2, :), elemPos(3,:), 'o'): oot ‘ | | | | ‘ |

grid oz -0.02 -0.015 0.01 -0.005 0 0.005 0.01 0.015 0.02
xlabel('yv'):
ylabel("z");

A 4 x 8 URA with normal axis aligned on x
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Multiple Antennas in Commercial Systems

dSub 6 GHz systems: Mostly 1 to 4 antennas on base stations or smart phones

JForm factor restricts larger number of antennas

k
.
TT
WiFi Router
Linksys AC2200 with 4TX/RX 2x2 LTE base station antenna
Cros-polarization K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S.
16 dBi element gain, 90 deg sector He, "Body-Insensitive Multimode MIMO
750x120x60mm Terminal Antenna of Double-Ring Structure,"

in IEEE Transactions on Antennas and
Propagation, vol. 63, no. 5, pp. 1925-1936, May
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Massive MIMO

(dMassive MIMO:

o Many base station antennas Role of Active vs. Passive Antennas
° 64 to 128 in many systems today SngleAmetna  mommo ecemmo oMo MiMo
N - X X = T
Significant capacity increase ¥ x| ___[x | S
> X X anonae e
o Typically 8x by most estimates g X

x
QUse SDMA o B

|
1
1
I
I
!
!
|
1
I
4

o Will discuss this later

I
I
I
I
1
I
I
e

&
I

RF ; . |
Coatx Fiber Fiber Fiber Fiber
Fronthau Fronthaul Fronthaul Fronthaul
(o] (=)
Generation 1 Generation 2 Generation 3 Generation 4
Base Transceiver Stafion fomofe Aadio Haad Integrated Antenna Radi integrated Anfenna Radio
Achive Arlanng Sysem Active Anfenna Systam

1990 20167
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Beamforming and MmWave

dTo compensate for high isotropic path loss, mmWave systems need large number of antennas

[5G handsets: Multiple arrays with 4 to 8 antennas each

L5G base stations: 64 to 256 elements
IBM 28 GHz array
32 element dual

5G mmW Beamforming Module

Cellular IF-Radio b 80 mm, } 58 een¥ Baareforming Moduls
et D i ———— e N [ e PP ,
= — ~ i s B e e polarized array
3 . : “F' BF 1 (O (=) BF Module 2 MI_“-: : EEEN
I o = B g D TR Sadhu et al, ISSCC 2017
imie 3 F H = B S Sk e
= -
1 rOCRKRce
160 mm : :: : " :: : E St Besis
Baseband P .: cccccc H:“: :-I; .
% | | -—_——'-.____._ Bamry e [ —
! =
|
et Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user
| equipment." 2018 IEEE 5G World Forum (6GWF). IEEE, 2018.

@ TANDON SCHOOL
NYU | Zroonssioo




In-Class Problem: Simple QPSK simulation

Simulate QPSK transmission over a single path channel
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Array Factor

dSuppose RX aligns antenna for AoA Qy = (08, ¢o)

LBut, signal arrives from AoA Q = (6, ¢)

Actual arrival
(dDefine the (complex) array factor

1
AF(Q,Qp) = W (Qo)u(Q) = —=u"(Qo)u()
R \/M [¢) BF direction
o Assume ||W|| = 1 Q,

o Indicates directional gain as a function of AoA 6 Array >
o Dependence on 6, often omitted

QSNR gain = |AF(Q, Qy)|?
o Max value=M
o Usually measured in dBi (dB relative to isotropic)
o Also called the array response
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Uniform Linear Array

y

Spatial signature (for azimuth angle Q): _

° — JB piM-1)B _ 2mdcos ¢ Arrival

u(o) [1, elP, ... ] >
o Note change from sin 8 to cos (l). (Array aligned on y-axis) o
) BF direction

QOptimal BF vector for AoA ¢, $o .

o w(gy) = u(gbo) (Note normalization)
JArray factor:

e/ M=1)¥/2 5in(My/2)
VM sin(y/2)

AF (¢, po) = W(o) u(e) =
@ (cos ¢ — cos @y),

sin?(My/2)
M sin2(y/2)

QdAntenna gain: |AF|? =
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Antenna Gain for ULA

d=21/2, M=28

Broadside: 6, = 0 Endfire: 8, = 90
theta0 = 0 theta0 = 90 dMaximum gain of
J ﬂ f | | dNote:
o Endfire vs. broadside
| ' | ' o Beamwidth « 1/M
o R YRR (Y
=5 < Broadside
10l | o |\ ﬂ I\ End fire\
1| =
15| : 15 q I q | Ry
=0 -160 -100 -50 EIP 50 100 150 20 -150 —‘1IDD -50 0 50 ‘1EIPD 150 -
Azimuth Azimuth
PeRO®E86 L
;L.. -A%L
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Plotting the Array Factor

for iplot = l:nplot —_—

% Get the 5V for the beam direction.

Dcreate a SteerlngveCtOF ObJeCt % Hote: You must call release method of the sv

% before each call =since it expects the same size
H % of the input
JGet steering vectors om0 = [azblot (iplot)s 01

sv.release() s

dCompute inner products a0 = sv(fe, ang0);

% Create a steering wvector object % Hormalize the direction
sv = phased.S5teeringVector ('SensorfArray',arr) ! uld = uld / norm(ud):
% Reference angles to plot the AF % Get the 5V for the Aolhs. Take el=0
azPlot = [0, 90]; npts = 1000;
nplot = length (azPlot) ; az = linspace(-1850,180,npts);
el = zeros(l,npts):;
theta0 =0 theta0 =90
10 10 ang = [az: =1]:
sv.release ()
5 5
u = gvifc, ang):
0 0
- - ¥ Compute the AF and plot it
o o
g—ﬁ i 5 AF = 1l0%logld{ abks(sum(conj (ul).*u, 1))."2 )
" " $ Plot it
3 <5 subplot (1, nplot,iplot) !
plot{ang({l, :), &AF, 'LineWidth', 2):
-20 -20
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 End

Azimuth Azimuth
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Polar Plot

Useful to visualize in polar plot % Polar plot
AFmin = -30;
Note key features: subplot (1, nplot, iplot) ;
o Direction of maximum gain polarplot (deg2rad({az), max(AF, AFmin), 'LineWidth', 2):
o Sidelobes rlim([AFmin, 10]};
grid on;

o Pattern repeated on reverse side

thetal=0 thetal = 45
90 a0
120 10 60 120 10 60
0 0
150 ; 30 150 30 150 30
180 0 180 0 180 0
210 330 210 330 210 330
240 300 240 300
270 270 270
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Key Statistics

Full null beamwidth
(zero to zero)

Half power beamwidth
(-3dB to -3dB)

First sidelobe level

dFrom Jacobs University slides

Broadside (fy = Tf 2)

End-fire (&) = 0}

FNBW | 2 [£ —cos™ ()] | 2cos™ (1 - =%
(30°) (83°)
HPBW | 2[5 —cos! ()] | Zeow " (1 130)
(13° (54*
S— ;
FSLL (5] %‘sm( =
(-13 dB) (-13 dB)
Dy Zﬁ"&f«\ 4NA/A
(9 dB) (12 dB)

dValuesin () for:d =41/2, M =8
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Grating Lobes

NYU

JdWhen d > %

(JObtain multiple peaks

(dDoes not direct gain in one direction

g
N

T HNumker of elements

dsep = 2%¥lambda; % element spacin
nant = 8;

arr = phased.ULA (nant,dsep) ;

% Get the 5V for the beam direction.
angd = [0y 0]:

sv.release ()

uld = svifc, angl):

arr.patternfzimath (fc, "Weights", ud);

TANDON SCHOOL
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Plotting the Patterns

(MATLAB has excellent routines for 3D patterns

(Note that this plots directivity not array factor

sv = phased.SteeringVector ('5Sensorhrray’,arr); A el Gt (requency =28 619
ang0 = [0; 0]:
sv.release ()
uld = sv(fc, angl):
ul = ul / norm(ud):

X
Az 0
EID
% We can plot the directivity in a 3D plot elPlot = [0 45]:
arr.pattern(fc, '"Weights', ul); arr.patternfAzimuth (fc, elPlot, 'Weights', ul):
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Element Gain

JAbove analysis assumes each element is omni-directional
(JEach antenna element may also have gain.
JAssume all elements of an array are identical and have same orientation

dPattern multiplication theorem: The frequency response of a single path channel is:

[ h(w) = g(@) A (Q)u(Q) ]

ad 4 -

Freq response  flement gain Spatial signature
@reference

dResulting array factor (in linear scale): AF(Q, Q) = AFi55(Q, Qg)Ag ()

° AFi55(Q, Q) = \/%u* (Qy)u(Q) = array factor with isotropic elements
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Example: URA with Patch Elements

Example 4x8 URA Isotropic elements sl
Add patch element 4 x 8 URA peo HQ

Peak directivity = 15 dB
Gain in both positive and
negative x direction

o Element normal in +x direction
o Peak element gain =~ 8 dBi

Directivity (dBi})

o Adds to the total array gain

3D Directivity Pattern
Patch elements

Elevation  [90°, 90°] ; ;ﬂ
Z
4 x 8 URA a o

| 90

Peak directivity = 21 dB
Gain low in negative x

. . 2 x
direction AzO
| El0

Element pattern

8§ 5 ° 3 B
Directivity (dBi})
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Example: URA with Patch Elements in 2D

dPattern multiplication in 2D

JElement gain increases directivity

(dNote: MATLAB plots directivity Flemen’ gein (<81 Arrey Directviy (d8)
> Does not plot array gain 0 AN 120 0 %
o Directivity is array gain normalized to one 150 0 3 150

=¥
180 . 0 180

210 330 210 330

e |5 0trO PG

== \\lith element gain
240 300 240 300

270 270
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In-Class Problem: Simulating BF Mismatch

L Continue simulation but with BF mismatch
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Multiple Paths

(JEasy to extend channel response to multiple paths
(JEach path adds a term with a spatial signature

Time-domain model

L
() =) geeltu(@)x(t — 1) +n(®)

a

Doppler shift
Delay

Complex gain AOA
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Time-Varying Frequency Response

QApply input x(t) = e/®t

RX vectoris r(t) = h(t, w)x(t)
Time-varying frequency response
Qh(t,w) = Th_, geel 1o u(Q,)

(dVector channel response

@ TANDON SCHOOL
NYU | Zroonsstoo.



Time-Varying Frequency Response

QMultipath channel: 7(t) = Y5_, gpe/ @t u(Q,) x(t — 1p)
O Consider exponential scalar input: x(t) = e/®t
QVector outputis: r(t) = h(t, w)x(t)

U Time-varying frequency response

4 N

L
h(t’ (1)) — z gge](wft_wrf)u(ﬂf)
=1
NS J

QMay also write: h(t, f) = h(t, 2nf)
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OFDM Time-Frequency Grid

Subcarrier (JRecall OFDM from earlier lecture
spacing . . .
Af 1 Divide channel into sub-carriers and OFDM symbols
- f= T o Resource element: One time-frequency point
)
Cc . . .
v (Data is transmitted is an array: X|[n, k|
§ t > k = OFDM symbol index, n = subcarrier index
iy
I o One complex value per RE.
(JReceive a vector:
T
Y[n k] = [Yl[n, kl, ..., Yyln, k]]
OFDM symbol o One complex symbol per antenna per RE
e
Tsym

Time ——
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OFDM Channel with Multiple RX Antennas

(JOFDM channel acts as multiplication:
Under normal operation (delay spread is contained in CP):

Y|k,n] = H[k,n] X[k, n]
RX symbol vectors Vector channel TX symbols
(JOFDM channel gains can be computed from the multi-path components

L
H[k’ n] — z /Efe—ZTL'j (kag+SnTg+¢g) u(ﬂf)
=1

o T = OFDM symbol time, S = sub-carrier spacing
o For each path: f, =Doppler shift, T, =Delay, ¢, = phase of path, E, = path received energy
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Time Scales

dConsider vector channel response
L

h(tw)= ) gl omeu(@,)

Large scale parameters: Change slowly
o Gain gy and angles Q,
o Depend on geometry and large obstacles.

dSmall scale parameters: Change rapidly
> wTyp: Changes over frequency on order of inverse delay spread
o wpt: Changes over time on order of Doppler spread
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RX Correlation

(JHow correlated are two different antennas?
o Related to diversity gain

dCovariance matrix

dTypically fix AoA and path gains, average over w and t
JAveraging over time and frequency: Eh(t, w) = 0 and

L
[ Q=) 19 u@)u(@p) }

o Proof on board
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Correlation with Random Ao0As

dSuppose:
o ULA with M elements

o L large. Total power gain G
o AoAs spread 6 had pdf p(0)

dThen:

2T

ka — Gj p(g)eikd(k—m) cos 9d9
0
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Correlation with Uniform AoAs

QIf 8 uniform [0,27]
dThen:

G 2T
Qjm :% )

° djm = d(j —m) distance between antennas

ptkd(j—m) cos 8 19 — To (Zn;lfm)

o Jo(x) = Bessel function
Become uncorrelated when dj,;, > 4

(U Need more spacing for smaller range of angles
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Diversity Gain

dPeak gain does not depend on antenna size

dHigh diversity gain requires wide separation

JExample:
o f. = 3 GHz
o A =10cm

o Antenna separation 104 = 1 m

o

Possible in a cellular tower.

o

Not possible in a handset
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Outline

JAntenna arrays and the Spatial Signature

(JReceive Beamforming and SNR Gain
JArray Factor
dMultiple paths and Diversity

*Transmit Beamforming
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Multiple TX antennas

MISO channel
o Multiple input single output
o M TX antennas, 1 RX antennas ) )
T j
o Transmit vector: x(t) = (xl(t), ...,xM(t)) -
o Scalar RX: r(t)

el S

o

(dMost of the theory is identical to the SIMO channel
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Single Path Channel

First consider single path channel

Similar to SIMO case, RX signal is:

r(t) = gou"(x(t — 7) vz
° go path gain
o () =angle of departure \Q
> 0

o T = path delay

o u*({)) spatial signature RX with single

™ array antenna

TX and RX spatial signatures are identical
o Except you apply the conjugate transpose
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TX Beamforming

dRX signal is: r(t) = gou*(Q)x(t — 1) + n(t)

dTX beamforming
o Input scalar information signal s(t)
o Create vector signal to antennas: x(t) = w s(t)
o wis called the TX beamforming vector

JAlso called pre-coding

TANDON SCHOOL
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Q
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°
s(t) x(t) o
Scalar N signals
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MRC TX Beamforming

dRX signal is: r(t) = gou*(Q)x(t — 1) + n(t)

w RX

JAnalysis is identical to SIMO case TX BF vector 0
1
(MRC TX BF vector: w = \/—Nu(ﬂ) J TX array
o Align with AoD ° 9]
B —— »0 >
(ASNR gain =N S(t) x(t) :
Scalar N signals

(JDefine and compute Array Factor similarly

JAlso define multi-path channel
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Beamforming and Channel Estimation

Key issue for beamforming: Channel estimation

dTX and RX beamforming require that channel is known

dWe will discuss many of these concepts later W
o Reference signals
o Channel feedback Ot RX array
o Channel tracking .. '.
° Beam management i Qrx ®
o Spatial equalization TX array
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Friis’ Law and MmWave

N P 2 \?
Recall Friis’ Law: — = D, D, (—)
Pt 41TR 250 . IFreeSpacel—WayPath Loss (km) | | RFCa_|fe.m-n
s 1 () kHZ
Qlsotropic path loss decreases with 1 o | e o
- e
OMillimeter Wave systems: Increases f> goso | —oon L L LT
‘ = e [ R e
o Decreases 1% = Increase path loss P e e e e i M e P
o Compensate isotropic path loss with directivity, D; £ //ﬁ///
===
LFix aperture A; on TX side, A, on receiver side 0
. A . Q"a{, qo\, 2, < ) ‘2, JOQO 4 ‘70"00 "ooo
o Canfit N; = % antennas on each side Distance (km) T T T,

. . . A'
o Leads to directivity: D; « N; « /1—21

(dCan compensate isotropic path loss with directivity
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Friis’ Law and MmWave

No beamforming D; constant PL « f?
Beamforming on one side D, « f?, D, constant PL constant
(TX or RX)
Beamforming on both sides D,, D, « f.2 PL o f;2
(TX and RX)

., P, 2 \?
UFriis’ Law: — = D;D, (—)

Pt 41TR

Conclusions: With a fixed aperture and beamforming
o |sotropic path loss can be overcome

But systems need very directive beams
o Raises many other issues. E.g. Channel tracking, processing, ...
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