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Antenna Arrays
Antenna arrays:  Structure with multiple antennas
◦ At TX and/or RX
◦ Key to 5G mmWave and massive MIMO

Two key benefits

Beamforming:  This lecture
◦ Concentrate power in particular directions
◦ Increases SNR and may enable spatial diversity 
◦ Requires arrays at either TX or RX

Spatial multiplexing:   Next lecture
◦ Enables transmission in multiple virtual paths
◦ Increases degrees of freedom
◦ Requires multiple antennas at both TX and RX
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IBM 28 GHz array
32 element dual 
polarized array
Sadhu et al, ISSCC 2017

Aurora C-Band Massive 
MIMO array
64 elements, 5-6 GHz
https://www.taoglas.com/

https://www.taoglas.com/


Multiple Receive Antennas
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Single Input Multiple Output
◦ One TX antenna
◦ 𝑀𝑀 RX antennas

Transmit a scalar signal 𝑥𝑥(𝑡𝑡)

Receive a vector of signals:
◦ 𝒓𝒓 𝑡𝑡 = 𝑟𝑟1 𝑡𝑡 , … , 𝑟𝑟𝑀𝑀 𝑡𝑡 𝑇𝑇

What is the channel from 𝑥𝑥(𝑡𝑡) to 𝒓𝒓 𝑡𝑡 ?

Want channel in complex baseband



Channel vs. Position
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To understand SIMO channel, consider  single path channel
◦ AoA of 𝜃𝜃 relative to z-axis
◦ Delay 𝜏𝜏0 to origin
◦ Gain 𝐴𝐴 is constant close to origin

Transmit signal 𝑠𝑠(𝑡𝑡) and look at response at position 𝑥𝑥

Consider a RX position close to origin
◦ B|𝑥𝑥| ≪ 𝑓𝑓𝑐𝑐𝜆𝜆, 𝐵𝐵 = bandwidth of 𝑠𝑠(𝑡𝑡)

Phase rotation with displacement:
◦ Baseband response at 𝑥𝑥 is (proof on next slide):

𝑟𝑟 𝑥𝑥, 𝑡𝑡 ≈ 𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆 𝑟𝑟 0, 𝑡𝑡

𝜃𝜃
RX 
position0 𝑥𝑥

𝑧𝑧

Response at 𝑥𝑥 = 0Phase rotation with 𝑥𝑥

𝑟𝑟 𝑥𝑥, 𝑡𝑡

𝑠𝑠(𝑡𝑡)



Proof of  Phase Rotation with Displacement
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Delay of path at 𝑥𝑥 is: 𝜏𝜏 𝑥𝑥 = 𝜏𝜏0 −
x sin 𝜃𝜃

𝑐𝑐

Baseband response at 𝑥𝑥:  

𝑟𝑟 𝑥𝑥, 𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝜔𝜔𝑐𝑐𝜏𝜏0𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆𝑠𝑠(𝑡𝑡 − 𝜏𝜏 𝑥𝑥 )

Also, 𝑠𝑠 𝑡𝑡 − 𝜏𝜏 𝑥𝑥 ≈ 𝑠𝑠(𝑡𝑡 − 𝜏𝜏0) if B 𝜏𝜏 𝑥𝑥 − 𝜏𝜏0 ≪ 1

But, by assumption of small displacement:

B 𝜏𝜏 𝑥𝑥 − 𝜏𝜏0 ≤
𝐵𝐵|𝑥𝑥|
𝑐𝑐

=
𝐵𝐵|𝑥𝑥|
𝜆𝜆𝑓𝑓𝑐𝑐

≪ 1

Hence, 𝑟𝑟 𝑥𝑥, 𝑡𝑡 ≈ 𝐴𝐴𝑒𝑒−𝑗𝑗𝜔𝜔𝑐𝑐𝜏𝜏0𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆𝑠𝑠 𝑡𝑡 − 𝜏𝜏0 = 𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑥𝑥 sin 𝜃𝜃 𝜆𝜆𝑟𝑟(0, 𝑡𝑡)

𝜃𝜃

RX position

0 𝑥𝑥



Response for a ULA
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Uniform Linear array (ULA)
◦ 𝑀𝑀 antenna positions spaced 𝑑𝑑 apart

Transmit signal 𝑠𝑠(𝑡𝑡)
◦ Channel single path with AoA 𝜃𝜃, gain 𝐴𝐴

Response at position:  𝑟𝑟𝑚𝑚 𝑡𝑡 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝜔𝜔𝜔𝜔0𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑛𝑛−1 𝑑𝑑 sin 𝜃𝜃 𝜆𝜆𝑠𝑠(𝑡𝑡 − 𝜏𝜏0)

SIMO frequency response is:

𝒉𝒉 𝜃𝜃,𝜔𝜔 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝜔𝜔𝜏𝜏0
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄0𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

⋮
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑀𝑀−1 𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

= 𝑔𝑔 𝜔𝜔 𝒖𝒖 𝜃𝜃

Scalar response at 
𝑥𝑥 = 0

Phase shifts across 
elements 



Response Decomposition
For a single path channel, the frequency response has two components:

𝒉𝒉 𝜃𝜃,𝜔𝜔 = 𝑔𝑔 𝜔𝜔 𝒖𝒖 𝜃𝜃

Scalar channel response, 𝑔𝑔 𝜔𝜔
◦ 𝑔𝑔 𝜔𝜔 = 𝐴𝐴𝑒𝑒−𝑗𝑗𝜔𝜔𝜔𝜔0
◦ Response at a reference position in array

Vector spatial signature, 𝒖𝒖 𝜃𝜃

◦ 𝒖𝒖 𝜃𝜃 =
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄0𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

⋮
𝑒𝑒2𝜋𝜋𝜋𝜋 ⁄𝑀𝑀−1 𝑑𝑑 sin 𝜃𝜃 𝜆𝜆

◦ Vector of phase shifts from the reference
◦ Also called the steering vector (reason for name will be clear later)
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Array Response in 3D
Many arrays place elements over 2D area

Uniform rectangular array (URA):
◦ 𝑀𝑀 × 𝑁𝑁 grid of elements
◦ Spaced 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦
◦ Also called uniform planar array (UPA)

Incident angle Ω = (𝜙𝜙,𝜃𝜃)
◦ (Azimuth, elevation) or (azimuth, inclination)

Spatial signature:
◦ 𝑢𝑢𝑚𝑚𝑚𝑚 Ω = complex response to antenna (𝑚𝑚,𝑛𝑛)

◦ 𝑢𝑢𝑚𝑚𝑚𝑚 Ω = exp 2𝜋𝜋𝜋𝜋
𝜆𝜆

(𝑚𝑚𝑑𝑑𝑥𝑥 sin𝜃𝜃 cos𝜙𝜙 + 𝑛𝑛𝑑𝑑𝑦𝑦 sin𝜃𝜃 sin𝜙𝜙)

9



Outline

10

Antenna arrays and the Spatial Signature

Receive Beamforming and SNR Gain

Array Factor

Multiple paths and Diversity

Transmit Beamforming



Multiple Receive Antennas

11

Single Input Multiple Output
◦ One TX antenna
◦ 𝑀𝑀 RX antennas

Transmit a scalar signal 𝑠𝑠(𝑡𝑡)

Receive a vector of signals:
◦ 𝒓𝒓 𝑡𝑡 = 𝑟𝑟1 𝑡𝑡 , … , 𝑟𝑟𝑀𝑀 𝑡𝑡 𝑇𝑇

Basic question:  How do we decode signal 𝑥𝑥(𝑡𝑡) from vector 𝒓𝒓 𝑡𝑡 ?

𝑠𝑠(𝑡𝑡)

𝑟𝑟1(𝑡𝑡)

𝑟𝑟2(𝑡𝑡)



Scalar Multiple Channel Problem
Consider transmission of a single symbol 𝑥𝑥

Receive a vector across 𝑀𝑀 channels:

𝒓𝒓 = 𝒉𝒉𝑥𝑥 + 𝒏𝒏 =
ℎ1
⋮
ℎ𝑀𝑀

𝑥𝑥 +
𝑛𝑛1
⋮
𝑛𝑛𝑀𝑀

◦ 𝑥𝑥:  Scalar TX symbol
◦ 𝒉𝒉: Vector of channel weights, 𝒏𝒏: Vector of noise

Channel can be from many different paths:
◦ multiple times, frequencies or antennas

Applies to a single degree of freedom (time or frequency)

Question:  How do we detect scalar 𝑥𝑥 from vector 𝒓𝒓?

12

ℎ1

ℎ2



Linear Combining
RX model: 𝒓𝒓 = 𝒉𝒉𝑥𝑥 + 𝒏𝒏
◦ 1 input, M outputs

Linear combining:  Take a linear combination

𝑧𝑧 = 𝒘𝒘∗𝒓𝒓 = 𝒘𝒘∗𝒉𝒉 𝑥𝑥 + 𝒘𝒘∗𝒏𝒏
= 𝛼𝛼𝛼𝛼 + 𝑣𝑣

𝒘𝒘 is called the weighting vector
◦ Called the beamforming vector for multiple antennas

Creates effective SISO channel:
◦ 1 input 𝑥𝑥, 1 output symbol 𝑧𝑧
◦ Gain:  𝛼𝛼 = 𝒘𝒘∗𝒉𝒉
◦ Noise:  𝑣𝑣 = 𝒘𝒘∗𝒏𝒏
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ℎ1

ℎ2



Linear Combining Analysis
Linear combining:   𝑧𝑧 = 𝒘𝒘∗𝒓𝒓 = (𝒘𝒘∗𝒉𝒉)𝑥𝑥 + 𝒘𝒘∗𝒏𝒏
◦ Gain:  𝛼𝛼 = 𝒘𝒘∗𝒉𝒉
◦ Noise:  𝑣𝑣 = 𝒘𝒘∗𝒏𝒏

Analysis:  Let
◦ 𝐸𝐸𝑥𝑥 = 𝐸𝐸 𝑥𝑥 2 = average symbol energy
◦ Assume noise 𝑛𝑛𝑚𝑚~𝐶𝐶𝐶𝐶(0,𝑁𝑁0) (i.i.d. complex Gaussian noise)

Then, after combining;
◦ Signal energy = 𝒘𝒘∗𝒉𝒉 2𝐸𝐸𝑥𝑥
◦ Noise:  𝑣𝑣 is Gaussian with 𝐸𝐸 𝑣𝑣 2 = 𝒘𝒘 2𝑁𝑁0
◦ SNR is:

𝛾𝛾 =
𝒘𝒘∗𝒉𝒉 2𝐸𝐸𝑥𝑥
𝒘𝒘 2𝑁𝑁0

14
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Maximum Ratio Combining
From previous slide:   SNR is 𝛾𝛾 = 𝒘𝒘∗𝒉𝒉 2𝐸𝐸𝑥𝑥

𝒘𝒘 2𝑁𝑁0

Maximum ratio combining:  Select BF vector to maximize SNR: �𝒘𝒘 = arg max
𝒘𝒘

𝒘𝒘∗𝒉𝒉 2𝐸𝐸𝑥𝑥
𝒘𝒘 2𝑁𝑁0

Theorem:  The MRC weighting vector and maximum SNR is:  

�𝒘𝒘 = 𝑐𝑐𝒉𝒉 ⇒ 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒉𝒉 2 𝐸𝐸𝑥𝑥
𝑁𝑁0

◦ Any constant 𝑐𝑐 ≠ 0 can be used.  Constant does not matter
◦ Align BF vector with the channel.  

Proof:
◦ From Cauchy-Schwartz:   𝒘𝒘∗𝒉𝒉 2 = 𝒘𝒘 2 𝒉𝒉 2 cos𝜃𝜃
◦ Hence, 𝛾𝛾 = 𝒉𝒉 2 𝐸𝐸𝑥𝑥

𝑁𝑁0
cos𝜃𝜃

◦ Maximized with cos𝜃𝜃 = 1 ⇒ 𝜃𝜃 = 0
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𝜃𝜃

𝒘𝒘

𝒉𝒉



MRC Gain
SNR with MRC:   𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒉𝒉 2 𝐸𝐸𝑥𝑥

𝑁𝑁0

SNR on channel 𝑖𝑖 is:  𝛾𝛾𝑖𝑖 = ℎ𝑖𝑖 2𝐸𝐸𝑥𝑥
𝑁𝑁0

Average SNR is: 𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑀𝑀
∑𝑖𝑖=1𝑀𝑀 𝛾𝛾𝑖𝑖 = 1

𝑀𝑀
∑𝑖𝑖=1𝑀𝑀 ℎ𝑖𝑖 2

𝐸𝐸𝑥𝑥
𝑁𝑁0

= 1
𝑀𝑀

𝒉𝒉 2 𝐸𝐸𝑥𝑥
𝑁𝑁0

MRC increases SNR by a factor of 𝑀𝑀 relative to average per channel SNR

Beamforming gain = 𝛾𝛾𝑀𝑀𝑀𝑀𝑀𝑀
𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎

= 𝑀𝑀

Example:  Suppose average SNR per antenna is 10 dB.
◦ With 𝑀𝑀 = 16 antennas and MRC, SNR = 10 + 10 log10(16) = 10 + 4 3 = 22 dB
◦ Gain increases significantly!
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RX Beamforming
Recall model for a single path channel:

𝒓𝒓 = 𝑔𝑔0𝒖𝒖 Ω 𝑥𝑥 + 𝒏𝒏
◦ 𝒖𝒖 Ω = spatial signature on that angle, Ω= angle of arrival
◦ 𝑔𝑔0 = gain at reference position in array
◦ 𝑥𝑥 = transmitted symbol

RX beamforming is just linear combining across antennas
𝑧𝑧 = 𝒘𝒘∗𝒓𝒓

◦ 𝒘𝒘 is called the beamforming vector
◦ By convention, we assume 𝒘𝒘 = 1
◦ Geometric interpretation to be given shortly
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MRC Beamforming
Single path channel:  𝒓𝒓 = 𝑔𝑔0𝒖𝒖 Ω 𝑥𝑥 + 𝒏𝒏
RX beamforming:  𝑧𝑧 = 𝒘𝒘∗𝒓𝒓
SNR per antenna (before beamforming):
◦ 𝛾𝛾0 = 𝐸𝐸𝑥𝑥 𝑔𝑔0 2

𝑁𝑁0
𝑢𝑢𝑚𝑚(Ω) 2 = 𝐸𝐸𝑥𝑥 𝑔𝑔0 2

𝑁𝑁0
◦ Assume 𝑢𝑢𝑚𝑚(Ω) includes only phase shifts

SNR after BF:  𝛾𝛾 = 𝒘𝒘∗𝒖𝒖 Ω 2

𝒘𝒘 2 𝛾𝛾0

MRC beamforming: �𝒘𝒘 = 𝑐𝑐𝒖𝒖 Ω and 𝛾𝛾 = 𝒖𝒖 Ω 2𝛾𝛾0 = 𝑀𝑀𝛾𝛾0
Conclusions:
◦ Optimal (MRC) beamforming vector is aligned to the spatial signature
◦ Optimal SNR gain = 𝑀𝑀
◦ Linear gain with number of antennas
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Example Problem
Consider a system
◦ TX power = 23 dBm with antenna directivity = 10 dBi
◦ Free space path loss 𝑑𝑑 = 1000 m
◦ Sample rate = 400 Msym/s
◦ Noise energy = -170 dBm/Hz (including NF)
◦ RX antenna directivity = 5 dBi and 8 elements

Find SNR per antenna and SNR with MRC

Solution:  We get a 9 dB gain!
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MATLAB Phased Array Toolbox
Powerful toolbox

Routines for:
◦ Defining and visualizing arrays 
◦ Computing beam patterns
◦ Beamforming
◦ MIMO
◦ Radar 
◦ …

20



Example:  Defining a ULA
Define and view the array

Can display array:
◦ Using viewArray command
◦ Or, manually

21



Computing the Spatial Signature
Compute the spatial signature with the SteeringVector object
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Example:  Defining a URA
Define and view the array

Use the phased.URA class

Can compute steering vector similarly

23

A 4 x 8 URA with normal axis aligned on x



Multiple Antennas in Commercial Systems
Sub 6 GHz systems:  Mostly 1 to 4 antennas on base stations or smart phones

Form factor restricts larger number of antennas

24

WiFi Router
Linksys AC2200 with 4TX/RX 2x2 LTE base station antenna

Cros-polarization 
16 dBi element gain, 90 deg sector
750x120x60mm

K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S. 
He, "Body-Insensitive Multimode MIMO 
Terminal Antenna of Double-Ring Structure," 
in IEEE Transactions on Antennas and 
Propagation, vol. 63, no. 5, pp. 1925-1936, May 
2015.



Massive MIMO
Massive MIMO:
◦ Many base station antennas
◦ 64 to 128 in many systems today

Significant capacity increase
◦ Typically 8x by most estimates

Use SDMA
◦ Will discuss this later
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Beamforming and MmWave
To compensate for high isotropic path loss, mmWave systems need large number of antennas

5G handsets:  Multiple arrays with 4 to 8 antennas each

5G base stations:  64 to 256 elements

26

IBM 28 GHz array
32 element dual 
polarized array
Sadhu et al, ISSCC 2017

Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user 
equipment." 2018 IEEE 5G World Forum (5GWF). IEEE, 2018.



In-Class Problem:  Simple QPSK simulation
Simulate QPSK transmission over a single path channel

27
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Array Factor
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Suppose RX aligns antenna for AoA Ω0 = (𝜃𝜃0,𝜙𝜙0)
But, signal arrives from AoA Ω = (𝜃𝜃,𝜙𝜙)
Define the (complex) array factor

𝐴𝐴𝐴𝐴 Ω,Ω0 = �𝒘𝒘∗ Ω0 𝒖𝒖 Ω =
1
𝑀𝑀
𝒖𝒖∗ Ω0 𝒖𝒖 Ω

◦ Assume �𝑤𝑤 = 1
◦ Indicates directional gain as a function of AoA 𝜃𝜃
◦ Dependence on 𝜃𝜃0 often omitted

SNR gain = 𝐴𝐴𝐴𝐴 Ω,Ω0 2

◦ Max value = 𝑀𝑀
◦ Usually measured in dBi (dB relative to isotropic)
◦ Also called the array response

Ω

Actual arrival

Ω0
BF direction

Array



Uniform Linear Array 
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Spatial signature (for azimuth angle 𝜙𝜙):
◦ 𝒖𝒖 𝜙𝜙 = 1, 𝑒𝑒𝑗𝑗𝑗𝑗 , … , 𝑒𝑒𝑖𝑖 𝑀𝑀−1 𝛽𝛽 𝑇𝑇

, 𝛽𝛽 = 2𝜋𝜋𝜋𝜋 cos 𝜙𝜙
𝜆𝜆

◦ Note change from sin𝜃𝜃 to cos𝜙𝜙.   (Array aligned on y-axis)

Optimal BF vector for AoA 𝜙𝜙0
◦ �𝒘𝒘 𝜙𝜙0 = 1

𝑀𝑀
𝒖𝒖 𝜙𝜙0 (Note normalization)

Array factor:  

𝐴𝐴𝐴𝐴 𝜙𝜙,𝜙𝜙0 = �𝒘𝒘 𝜙𝜙0 ∗𝒖𝒖 𝜙𝜙 =
𝑒𝑒𝑗𝑗 𝑀𝑀−1 ⁄𝛾𝛾 2

𝑀𝑀
sin( ⁄𝑀𝑀𝑀𝑀 2)

sin( ⁄𝛾𝛾 2)
,

◦ 𝛾𝛾 = 2𝜋𝜋𝑑𝑑
𝜆𝜆

(cos𝜙𝜙 − cos𝜙𝜙0),  

Antenna gain:  𝐴𝐴𝐴𝐴 2 = sin2( ⁄𝑀𝑀𝑀𝑀 2)
𝑀𝑀 sin2( ⁄𝛾𝛾 2)

𝜙𝜙

Arrival

𝑥𝑥

𝑦𝑦

𝜙𝜙0
BF direction



Antenna Gain for ULA
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Maximum gain of   

Note:
◦ Endfire vs. broadside
◦ Beamwidth ∝ ⁄1 𝑀𝑀

𝑑𝑑 = ⁄𝜆𝜆 2 , 𝑀𝑀 = 8
Broadside:  𝜃𝜃0 = 0 Endfire:  𝜃𝜃0 = 90



Plotting the Array Factor
Create a SteeringVector object

Get steering vectors

Compute inner products 
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Polar Plot
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Useful to visualize in polar plot

Note key features:
◦ Direction of maximum gain
◦ Sidelobes
◦ Pattern repeated on reverse side



Key Statistics
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From Jacobs University slides

Values in () for: 𝑑𝑑 = ⁄𝜆𝜆 2 , 𝑀𝑀 = 8

Full null beamwidth
(zero to zero)

Half power beamwidth
(-3dB to -3dB)

First sidelobe level



Grating Lobes
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When 𝑑𝑑 > 𝜆𝜆
2

Obtain multiple peaks

Does not direct gain in one direction



Plotting the Patterns 
MATLAB has excellent routines for 3D patterns

Note that this plots directivity not array factor

36



Element Gain
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Above analysis assumes each element is omni-directional

Each antenna element may also have gain.

Assume all elements of an array are identical and have same orientation

Pattern multiplication theorem: The frequency response of a single path channel is:

𝒉𝒉 𝜔𝜔 = 𝑔𝑔(𝜔𝜔)𝐴𝐴𝐸𝐸 Ω 𝒖𝒖(Ω)

Resulting array factor (in linear scale):  𝐴𝐴𝐴𝐴 Ω,Ω0 = 𝐴𝐴𝐹𝐹iso Ω,Ω0 𝐴𝐴𝐸𝐸 Ω
◦ 𝐴𝐴𝐹𝐹iso Ω,Ω0 = 1

𝑀𝑀
𝒖𝒖∗ Ω0 𝒖𝒖 Ω = array factor with isotropic elements

Element gain Spatial signatureFreq response
@reference



Example:  URA with Patch Elements 
Example 4x8 URA

Add patch element
◦ Element normal in +x direction
◦ Peak element gain ≈ 8 dBi
◦ Adds to the total array gain

38

Isotropic elements
4 x 8 URA
Peak directivity ≈ 15 dB
Gain in both positive and 
negative x direction 

Patch elements
4 x 8 URA
Peak directivity ≈ 21 dB
Gain low in negative x 
direction

Element pattern 



Example:  URA with Patch Elements in 2D
Pattern multiplication  in 2D

Element gain increases directivity

Note:  MATLAB plots directivity 
◦ Does not plot array gain
◦ Directivity is array gain normalized to one

39



In-Class Problem:  Simulating BF Mismatch
Continue simulation but with BF mismatch

40



Outline
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Antenna arrays and the Spatial Signature

Receive Beamforming and SNR Gain

Array Factor

Multiple paths and Diversity

Transmit Beamforming
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Easy to extend channel response to multiple paths

Each path adds a term with a spatial signature

Time-domain model

𝒓𝒓 𝑡𝑡 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑒𝑒𝑗𝑗𝜔𝜔ℓ𝑡𝑡 𝒖𝒖 Ωℓ 𝑥𝑥 𝑡𝑡 − 𝜏𝜏ℓ + 𝒏𝒏(𝑡𝑡)

Complex gain

Doppler shift

AoA
Delay

Multiple Paths



Time-Varying Frequency Response

43

Apply input 𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

RX vector is  𝒓𝒓 𝑡𝑡 = 𝒉𝒉 𝑡𝑡,𝜔𝜔 𝑥𝑥(𝑡𝑡)

Time-varying frequency response

𝒉𝒉 𝑡𝑡,𝜔𝜔 = ∑ℓ=1𝐿𝐿 𝑔𝑔ℓ𝑒𝑒𝑗𝑗𝜔𝜔ℓ𝑡𝑡−𝑗𝑗𝑗𝑗𝜏𝜏ℓ 𝒖𝒖 Ωℓ
Vector channel response



Time-Varying  Frequency Response
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Multipath channel:   𝒓𝒓 𝑡𝑡 = ∑ℓ=1𝐿𝐿 𝑔𝑔ℓ𝑒𝑒𝑗𝑗𝜔𝜔ℓ𝑡𝑡𝒖𝒖(Ωℓ) 𝑥𝑥(𝑡𝑡 − 𝜏𝜏ℓ)

Consider exponential scalar input:  𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

Vector output is:  𝒓𝒓 𝑡𝑡 = 𝒉𝒉 𝑡𝑡,𝜔𝜔 𝑥𝑥 𝑡𝑡
Time-varying frequency response

𝒉𝒉 𝑡𝑡,𝜔𝜔 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑒𝑒𝑗𝑗(𝜔𝜔ℓ𝑡𝑡−𝜔𝜔𝜏𝜏ℓ)𝒖𝒖(Ωℓ)

May also write:  𝒉𝒉 𝑡𝑡,𝑓𝑓 = 𝒉𝒉(𝑡𝑡,2𝜋𝜋𝜋𝜋)



OFDM Time-Frequency Grid
Recall OFDM from earlier lecture

Divide channel into sub-carriers and OFDM symbols
◦ Resource element:  One time-frequency point

Data is transmitted is an array:  𝑋𝑋 𝑛𝑛, 𝑘𝑘
◦ 𝑘𝑘 = OFDM symbol index, 𝑛𝑛 = subcarrier index
◦ One complex value  per RE.

Receive a vector: 
𝒀𝒀 𝑛𝑛, 𝑘𝑘 = 𝑌𝑌1 𝑛𝑛, 𝑘𝑘 , … ,𝑌𝑌𝑀𝑀 𝑛𝑛, 𝑘𝑘 𝑇𝑇

◦ One complex symbol per antenna per RE

45

Subcarrier 
spacing
Δ𝑓𝑓 = 1

𝑇𝑇

OFDM symbol
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

Time

Fr
eq

ue
nc

y



OFDM Channel with Multiple RX Antennas
OFDM channel acts as multiplication:
Under normal operation (delay spread is contained in CP):

𝒀𝒀 𝑘𝑘,𝑛𝑛 = 𝑯𝑯 𝑘𝑘,𝑛𝑛 𝑋𝑋[𝑘𝑘,𝑛𝑛]

OFDM channel gains can be computed from the multi-path components

𝑯𝑯 𝑘𝑘,𝑛𝑛 = �
ℓ=1

𝐿𝐿

𝐸𝐸ℓ𝑒𝑒−2𝜋𝜋𝑗𝑗 𝑇𝑇𝑇𝑇𝑓𝑓ℓ+𝑆𝑆𝑆𝑆𝜏𝜏ℓ+𝜙𝜙ℓ 𝒖𝒖(Ωℓ)

◦ 𝑇𝑇 = OFDM symbol time, 𝑆𝑆 = sub-carrier spacing
◦ For each path:  𝑓𝑓ℓ =Doppler shift, 𝜏𝜏ℓ =Delay, 𝜙𝜙ℓ = phase of path, 𝐸𝐸ℓ = path received energy

46

RX symbol vectors Vector channel TX symbols



Time Scales
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Consider vector channel response

𝒉𝒉 𝑡𝑡,𝜔𝜔 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ𝑒𝑒𝑗𝑗𝜔𝜔ℓ𝑡𝑡−𝑗𝑗𝑗𝑗𝜏𝜏ℓ 𝒖𝒖 Ωℓ

Large scale parameters:  Change slowly
◦ Gain 𝑔𝑔ℓ and angles Ωℓ
◦ Depend on geometry and large obstacles.

Small scale parameters:  Change rapidly  
◦ 𝜔𝜔𝜏𝜏ℓ:  Changes over frequency on order of inverse delay spread
◦ 𝜔𝜔ℓ𝑡𝑡:  Changes over time on order of Doppler spread



RX Correlation 
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How correlated are two different antennas?
◦ Related to diversity gain

Covariance matrix
𝑸𝑸 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝒉𝒉 𝑡𝑡,𝜔𝜔 = 𝐸𝐸 𝒉𝒉 𝑡𝑡,𝜔𝜔 − 𝝁𝝁 𝒉𝒉 𝑡𝑡,𝜔𝜔 − 𝝁𝝁 ∗

Typically fix AoA and path gains,  average over 𝜔𝜔 and 𝑡𝑡

Averaging over time and frequency:  𝐸𝐸𝒉𝒉 𝑡𝑡,𝜔𝜔 = 0 and

𝑸𝑸 = �
ℓ=1

𝐿𝐿
𝑔𝑔ℓ 2𝒖𝒖 Ωℓ 𝒖𝒖 Ωℓ ∗

◦ Proof on board



Correlation with Random AoAs
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Suppose:
◦ ULA with 𝑀𝑀 elements
◦ 𝐿𝐿 large.  Total power gain 𝐺𝐺
◦ AoAs spread 𝜃𝜃 had pdf 𝑝𝑝(𝜃𝜃)

Then:

𝑄𝑄𝑘𝑘𝑘𝑘 = 𝐺𝐺�
0

2𝜋𝜋
𝑝𝑝(𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘−𝑚𝑚 cos 𝜃𝜃𝑑𝑑𝑑𝑑



Correlation with Uniform AoAs
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If 𝜃𝜃 uniform [0,2𝜋𝜋]

Then:

𝑄𝑄𝑗𝑗𝑗𝑗 =
𝐺𝐺
2𝜋𝜋

�
0

2𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑗𝑗−𝑚𝑚 cos 𝜃𝜃𝑑𝑑𝑑𝑑 = 𝐽𝐽0

2𝜋𝜋𝑑𝑑𝑗𝑗𝑗𝑗
𝜆𝜆

◦ 𝑑𝑑𝑗𝑗𝑗𝑗 = 𝑑𝑑(𝑗𝑗 − 𝑚𝑚) distance between antennas 
◦ 𝐽𝐽0 𝑥𝑥 = Bessel function

Become uncorrelated when 𝑑𝑑𝑗𝑗𝑗𝑗 ≫ 𝜆𝜆

Need more spacing for smaller range of angles



Diversity Gain
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Peak gain does not depend on antenna size

High diversity gain requires wide separation 

Example:  
◦ 𝑓𝑓𝑐𝑐 = 3 GHz
◦ 𝜆𝜆 = 10 cm
◦ Antenna separation 10𝜆𝜆 = 1 m
◦ Possible in a cellular tower.  
◦ Not possible in a handset



Outline
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Antenna arrays and the Spatial Signature

Receive Beamforming and SNR Gain

Array Factor

Multiple paths and Diversity

Transmit Beamforming



Multiple TX antennas
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MISO channel
◦ Multiple input single output
◦ 𝑀𝑀 TX antennas, 1 RX antennas

◦ Transmit vector:  𝒙𝒙 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡 , … , 𝑥𝑥𝑀𝑀 𝑡𝑡 𝑇𝑇

◦ Scalar RX:  𝑟𝑟(𝑡𝑡)

Most of the theory is identical to the SIMO channel



Single Path Channel
First consider single path channel

Similar to SIMO case, RX signal is:

𝑟𝑟 𝑡𝑡 = 𝑔𝑔0𝒖𝒖∗ Ω 𝒙𝒙(𝑡𝑡 − 𝜏𝜏)
◦ 𝑔𝑔0 path gain 
◦ Ω = angle of departure
◦ 𝜏𝜏 = path delay
◦ 𝒖𝒖∗ Ω spatial signature 

TX and RX spatial signatures are identical
◦ Except you apply the conjugate transpose

54

Ω

TX array RX with single
antenna



TX Beamforming
RX signal is:  𝑟𝑟 𝑡𝑡 = 𝑔𝑔0𝒖𝒖∗ Ω 𝒙𝒙 𝑡𝑡 − 𝜏𝜏 + 𝑛𝑛(𝑡𝑡)

TX beamforming
◦ Input scalar information signal 𝑠𝑠 𝑡𝑡
◦ Create vector signal to antennas:  𝒙𝒙 𝑡𝑡 = 𝒘𝒘 𝑠𝑠 𝑡𝑡
◦ 𝒘𝒘 is called the TX beamforming vector

Also called pre-coding
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Ω
TX array

RX

𝒙𝒙(𝑡𝑡)
𝑁𝑁 signals

𝑠𝑠 𝑡𝑡
Scalar

𝒘𝒘
TX BF vector



MRC TX Beamforming
RX signal is:  𝑟𝑟 𝑡𝑡 = 𝑔𝑔0𝒖𝒖∗ Ω 𝒙𝒙 𝑡𝑡 − 𝜏𝜏 + 𝑛𝑛(𝑡𝑡)

Analysis is identical to SIMO case

MRC TX BF vector: �𝒘𝒘 = 1
𝑁𝑁
𝒖𝒖 Ω

◦ Align with AoD

SNR gain = 𝑁𝑁

Define and compute Array Factor similarly

Also define multi-path channel
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Ω
TX array

RX

𝒙𝒙(𝑡𝑡)
𝑁𝑁 signals

𝑠𝑠 𝑡𝑡
Scalar

𝒘𝒘
TX BF vector



Beamforming and Channel Estimation
Key issue for beamforming:  Channel estimation

TX and RX beamforming require that channel is known

We will discuss many of these concepts later
◦ Reference signals
◦ Channel feedback
◦ Channel tracking
◦ Beam management
◦ Spatial equalization

57

Ω𝑡𝑡𝑡𝑡

TX array

RX array

Ω𝑟𝑟𝑟𝑟



Friis’ Law and MmWave
Recall Friis’ Law: 𝑃𝑃𝑟𝑟

𝑃𝑃𝑡𝑡
= 𝐷𝐷1𝐷𝐷2

𝜆𝜆
4𝜋𝜋𝜋𝜋

2

Isotropic path loss decreases with 𝜆𝜆2

Millimeter Wave systems:  Increases 𝑓𝑓𝑐𝑐2
◦ Decreases 𝜆𝜆2 ⇒ Increase path loss
◦ Compensate isotropic path loss with directivity, 𝐷𝐷𝑖𝑖

Fix aperture 𝐴𝐴1 on TX side, 𝐴𝐴2 on receiver side
◦ Can fit 𝑁𝑁𝑖𝑖 = 𝑐𝑐𝐴𝐴𝑖𝑖

𝜆𝜆2
antennas on each side

◦ Leads to directivity: Di ∝ 𝑁𝑁𝑖𝑖 ∝
𝐴𝐴𝑖𝑖
𝜆𝜆2

Can compensate isotropic path loss with directivity
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Friis’ Law and MmWave

Friis’ Law: 𝑃𝑃𝑟𝑟
𝑃𝑃𝑡𝑡

= 𝐷𝐷1𝐷𝐷2
𝜆𝜆

4𝜋𝜋𝜋𝜋

2

Conclusions:  With a fixed aperture and beamforming
◦ Isotropic path loss can be overcome 

But systems need very directive beams
◦ Raises many other issues.  E.g.  Channel tracking, processing, …
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Condition Directivity scaling Path loss scaling

No beamforming 𝐷𝐷𝑖𝑖 constant 𝑃𝑃𝑃𝑃 ∝ 𝑓𝑓𝑐𝑐2

Beamforming on one side
(TX or RX)

𝐷𝐷1 ∝ 𝑓𝑓𝑐𝑐2, 𝐷𝐷2 constant 𝑃𝑃𝑃𝑃 constant

Beamforming on both sides
(TX and RX)

𝐷𝐷1,𝐷𝐷2 ∝ 𝑓𝑓𝑐𝑐2 𝑃𝑃𝑃𝑃 ∝ 𝑓𝑓𝑐𝑐−2
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