Problems: Antennas and Free-Space Propagation EL-GY 6023. Wireless Communications

Prof. Sundeep Rangan

In all the problems below, unless specified otherwise, ϕ is the azimuth angle and θ is elevation angle.

1. EM wave: Suppose the E-field is,

$$
\mathbf{E}(x, y, z, t)=E_{0} \mathbf{e}_{y} \cos (2 \pi f t-k x)
$$

(a) What is direction of motion?
(b) If the average power flux is $10^{-8} \mathrm{~mW} / \mathrm{m}^{2}$, what is E_{0} ? Assume the characteristic impedance is $\eta_{0}=377 \Omega$.
(c) If the frequency is $f=1.5 \mathrm{GHz}$, what is k ? What are the units of k ?
2. EM polarization: An EM plane wave has a power flux of $10^{-8} \mathrm{~mW} / \mathrm{m}^{2}$ in a horizontal polarization (along the x-axis) and $2(10)^{-8} \mathrm{~mW} / \mathrm{m}^{2}$ in a vertical polarization (along the y-axis). Assume the characteristic impedance is $\eta_{0}=377 \Omega$.
(a) What is combined E-field value and its direction?
(b) What is the direction of motion?
(c) What is the total power flux?
3. $d B m$ to linear conversions:
(a) Convert the following to $\mathrm{mW}: 17 \mathrm{dBm},-73 \mathrm{dBm},-97 \mathrm{dBW}$.
(b) Convert the following to $\mathrm{dBm}: 250 \mathrm{~mW}, 8(10)^{-8} \mathrm{~W}, 5(10)^{-6} \mathrm{~mW}$
4. Spherical-cartesian conversions:
(a) Convert $(r, \phi, \theta)=\left(2,45^{\circ}, 30^{\circ}\right)$ to (x, y, z).
(b) Convert $(x, y, z)=(1,2,3)$ to (r, ϕ, θ).
(c) Convert $(x, y, z)=(1,-2,3)$ to (r, ϕ, θ).
5. Rotation matrices: The rotation matrix $R(\theta, \phi)$ is the 3×3 matrix such that $R(\theta, \phi) \mathbf{r}$ rotates the vector \mathbf{r} by an angle pair (θ, ϕ). You can read more about this on wikipedia or other sources.
(a) Find the entries of $R(\theta, \phi)$.
(b) Show $R(\theta, \phi)$ is orthogonal meaning $R(\theta, \phi)^{-1}=R(\theta, \phi)^{\top}$.
(c) Is

$$
R\left(\theta_{1}, \phi_{1}\right) R\left(\theta_{2}, \phi_{2}\right)=R\left(\theta_{2}, \phi_{2}\right) R\left(\theta_{1}, \phi_{1}\right) ?
$$

That is, do the order of rotations matter? Prove or find a counter-example.
6. Angular areas: Find the angular area in steradians of following sets of angles:
(a) $A_{1}=\{(\phi, \theta) \mid \phi \in[-30,30], \theta \in[-90,90]\}$
(b) $A_{2}=\{(\phi, \theta) \mid \phi \in[-30,30], \theta \in[-45,45]\}$
7. Directivity: Suppose an antenna radiates power uniformly in the angular beam $\phi \in[-30,30], \theta \in$ $[-45,45]$ and radiates no power at other angles. What is the directivity of the antenna?
8. Radiation intensity: A $170 \mathrm{~cm} \times 40 \mathrm{~cm}$ object (roughly the size of a human) is 800 m from a base station. If the antenna transmits 250 mW isotropically, how much power reaches the human? Use reasonable approximations that the human is far from the transmitter.
9. Radiation integration: The radiation density for some antenna is,

$$
U(\phi, \theta)=A \cos ^{2}(\phi), \quad A=100 \mathrm{~mW} / \mathrm{sr} .
$$

(a) What is the total radiated power in mW and dBm ?
(b) What is the directivity of the antenna in linear scale and in dBi ?
10. Numerically integrating patterns: Write a short MATLAB function,

```
function [totPow, dir] = powerDirectivity(az,el,E,eta)
```

that computes the total power and directivity as a function of the E-field values. The E field is specified as a complex matrix $E(i, j)$ at angles $a z(i), e l(j)$. You can assume that the angles are uniformly spaced over the total angular space. The total power output totPow should be a scalar representing the total radiated power in dBm and the directivity output should be dir (i, j) should be a matrix.
11. Friis' Law: A transmitter radiates 100 mW at a carrier $f_{c}=2.1 \mathrm{GHz}$ with a directional gain of $G_{t}=10 \mathrm{dBi}$. Suppose the receiver is $d=200 \mathrm{~m}$ from the transmitter and the path is free space. What is the received power if:
(a) The effective received aperture is $1 \mathrm{~cm}^{2}$.
(b) The receiver gain is $G_{r}=5 \mathrm{dBi}$.

