Unit 4. Coding and Capacity on
Fading Channels

ECE-GY 6023. WIRELESS COMMUNICATIONS
PROF. SUNDEEP RANGAN




Learning Objectives

dDescribe symbol mapping for QAM constellations

dimplement symbol detection for faded symbols
o Compute average BER and SER on AWGN and flat channels and compare

lidentify if a system can be modeled as slow vs. fast and frequency-selective vs. flat fading
dFor slow and flat fading, compute outage probability and capacity under a fading model
For IID fading, compute the ergodic capacity

Create a TX and RX chain for flat and fading channels with given components
o Symbol equalization, soft symbol detection, interleaving, channel decoder

(JUse MATLAB tools for common channel encoders and decoders
o Convolutional, turbo codes and LDPC codes
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Outline

JAUncoded Modulation over Fading Channels

(JOutage Probability and Ergodic Capacity
dReview: Coding over an AWGN Channel
Coding over Fading Channels
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Uncoded Modulation

Symbol TX filter

mapping RX filter demodulation
—P » > > > _
TX bits QAM RX QAM RX bits
symbols Fading symbols

channel

This section: Uncoded modulation over fading channels
o That is, communication with no channel encoding and decoding

dWe will show uncoded modulation works very poorly

Virtually all practical wireless systems use coding of some form
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Mathematical Model

Fading channel

Symbol TXQAM N | RX QAM
symbols g /\(\NW symbols Symbol

mapping demodulation

s[n] - r[n]
TX bits : ; RX bits
USimple memoryless model:
r[n] = h[n]s[n] + w[n]

o s[n] and r[n]: TX and RX QAM symbols
o h[n]: Fading channel gain, w[n] Noise

L Assumptions:
o Perfect synchronization
o No ISl in the channel (or the equalizer has removed the effect of the ISI, more on this later)
o We can look at one symbol at a time

@ TANDON SCHOOL
NYU | Zroonssioo




Review: Bit to Symbol Mapping

db[k] € {0,1} = sequence of bits.

ds[n] € {s4, ..., Sy} = sequence of complex symbols
o Each symbol has one of M possible values

!

b[0], b[1]}b[2], b[3]}b[4], b[5]] ...
0 | sli] s[2]

s|

dModulation rate: R,,,q = log, Mbits per symbol
o Each R,,,4 bits gets mapped to one symbol T

dSymbol period: One symbol every T seconds.

(Bit rate of R = R,,,,4/T bits per second

Ex. with M=4 symbols
R.04=2 bits per symbol
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Review: QAM Modulation

UM —QAM: Most common bit to symbol mapping in wireless system
o R/2 bits mapped to I and R /2 bits mapped to Q

o Each dimension is mapped uniformly

QPSK

Q
'Y
01~ | w11
@ Q
/ N
I:I : >
\ .."I
\"1 .r"l.
on® - | __,/Qafm

R = 2 bits/sym
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ML Estimation for Symbol Demodulation

Consider single symbol: r = hs +w, w ~ CN(0,N,), s € {sq, ..., Sy}
o Drop the sample index n
° s isa QAM symbol

L Maximum likelihood estimation:

§=arg max p(r|s=s,y)
$=S4,...SM

UGiven s and h: r~CN (hs, Ny)
dHence,

(rls) = 1 |r — hs|?
p(r|s —nNOexp N,
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Equalization and Nearest Symbol Detection

_ 2
dLikelihood: p(r|s) = ﬁeXp (_ |r Nhsl )
0 0

AMLE is: § = argmaxp(r|s) = arg min|r — hs|? = arg min|z — s|?
S S S

r

dHere, z = — = equalized symbol.

(JProcedure:
T

o Step 1: Equalize the symbol: z = -

o Step 2: Find s = s4, ..., Sy closest to z in the complex plane
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Decision Regions

S, s, (closest Decision Example: Decision
(o) [ oint [ .
,P ) region for s, region in QPSK
(o) (0]
S S,

ML estimate is closest point in constellation to z: § = arg min||z — s;||
l

UDecision region for a point s,,,:
o set of points r where s,, is the closest point: D,, = {r|§ = s,,,}
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Error Probabilities on an AWGN Channel

UError probabilities:
o Symbol error rate, SER: Prob symbol is misdetected
o Bit error rate, BER: Probability of a bit is in error
o Assume TX symbols are uniformly distributed

(JFirst consider AWGN model: z=s+ v
o No fading

(JSER for QPSK can be shown to be:
2
SER=1-(1-Q0W¥s)) = 2Q0Ws)

E;  E|s|?
© SNR=y, = =% =
Vs =Ny ~ Ell
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SER for AWGN Modulation

JError formula can be derived for most QAM mappings
o See, e.g., Proakis

dFor an AWGN channel:
o SER typically decays exponentially with SNR

o Ex: for QPSK

Synbol Error Probability, Ps
.-
L]
=
=
[t

le=83

le-B6
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Ex: BER Simulation for 16-QAM

% SNR levels to test
EbNOTest = (-5:11)°;
ntest = length(EbN®Test);

(JSee demo

(JEasy to do in MATLAB
% TX symbol energﬂ
Es = mean(abs(s).”2);
ber = zeros(ntest,1);

for i = 1:ntest

% Add the noise

EbNe = EbNe@Test(i);

chan = comm.AWGNChannel("BitsPerSymbol", bitsPerSym, 'EbNo', EbN@,
'SignalPower', Es);

r = chan.step(s); %
% Demodulate |
bitsEst = gamdemod(r,M, "UnitAveragePower’,true, 'Output’, 'bit');
% Measure the BER
ber(i) = mean(bitsEst ~= bits);
fprintf(1, 'EbN@=%7.2f BER=%12.4e\n', EbN@, ber(i));
4 -2 0 2 4 6 8 10 12
% Break if zero since higher SNRs also be zero Eb/NO [dB]

if (ber(i) ==
break

)

end



SNR on a Fading Channel

dNow return to a fading channel:
r=hs +w, w~CN(0, Ny),

JEqualization: z = % =s+v, SNR __|n|?E;
o = % Effective noise after equalization S No
SNR after equalization: _
> Noise energy after equalization: High
Elvf? = - Elwf? = N
v w
Dk g
. . - E|s|? . zé % )
SNRis y, = B |h| N i ;oNv;
o SNR varies with the fading h

dAverage SNRis: 7, = E[y] = E|h|2%
0

@ TANDON SCHOOL
NYU | Zroonssioo




Average SER on a Fading Channel

dFading channel: r = hs +w
QWwith fading, SNR is random ,. SNR is y; = |h|? %
0

dDefine the average SER: oo
SER(ys) = E[SER(ys)] = j p(¥s) SER(ys)dys
0

o A function of the average SER
o Represents the average over independent channel realizations

QIf h is Rayleigh distributed, y; is exponential with ¥, = E[y,] = E|h|? s

Ny
- 1 r® _
SER(7) = — j e=¥s/%s SER (y,)dy,
0

S
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Example: SER on QPSK with Rayleigh Fading

Rayleigh fading: y, is exponential E(ys) = ¥.
dQPSK: SER(y,) = 2Q (,/Zys) for large v,

QdLemma: Suppose that y is exponential E(y) = 7, E Q(\/ ) [ ,/zjzy] 2ay

o Detailed proof below. Write

JAverage SER: From Lemma
SER = E[SER(y,)] ~

27 21
(JAverage SER decays as « 1/,

dIn AWGN channel, SER decays as @ (,/2)/5) < e Vs

dMuch slower decay
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Comparison of Fading vs. AWGN

Error rate with fading is dramatically higher.
SER with QPSK

— TN ! JEx. for QPSK:
—‘;":(_'Vs)’sq”(““fs)f > No fading, SER decays exponentially
—— Fading
o With fading, SER decays with inverse SNR

— 112y

--------- | Similar relations for most other constellations

dNeed much higher SNR

................... NO fading Rayleigh fading
Eb/NO (dB) ? — e_77 ) - 1

SER(yg)—=—=—  SER(yq)~—

Y s 27
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16-QAM Example

(JSee demo

== AWGN

- Wiiedopl Large gap between AWGN and Rayleigh

BER

-5 0 5 10 15 20
Eb/NO [dB]
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Lemma for Average of Q function

dlLemma: Suppose that y is exponential E(y) = 7.

E(Qan) =5

Proof:
E (Q(v—)) =15 Q(ar)e 7 dy

OO

* QW) = 77 e P
o Change order of integral

TANDON SCHOOL
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ay
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In-Class Exercise

Problem 1: Theoretical Error Rate Probability
Modify the code in the demo to compute the BER vs. Es/N@ for 16-QAM for AWGN and fading channel. (Recall the demo measured the

BER vs. Eb/N@) .

‘IO0 T T T T T
O AWGN (sim)
AWGN (theory)
o Fading (sim)
Fading (theory)
101 F
o
1]
m
102}
1073
0 5 10 15 20 25 30

Es/NO [dB]
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Outline

dUncoded Modulation over Fading Channels

:>Capacity with Coding over Fading Channels
dReview: Coding over an AWGN Channel

Coding over Fading Channels
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Coding Over Fading Channels

JLesson from previous section:
o With fading, uncoded modulation cannot provided sufficient reliability
o Error rate decays slowly with SNR

— AWGN i
—exp(-y Msqrt(my ) |

= Fading
| =112y

(dChannel coding:
o Send data in blocks

> Block contains redundancy .- .- = e |

. < [ : : ‘ ]

o |f some parts fade, can still recover block i \ | ]

10°} \ ; , 1

JAIl commercial wireless systems use coding! 10%; - 0 5 2
Eb/NO (dB)
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Time and Frequency Fading

ORecall: Channels vary over time and frequency SNR [dB]

T T T 4 5
w :

Variation in time:
o Due to Doppler spread, §f

oo (o2} RS M o
T T T T

[
Ll

: 1 =
o Coherence time, T,,, ~ — Weon T s
con ™ 281 ~5MHz | 2o
> Time over which channel changes significantly 2 1 k 10
14F ]
dVariation in frequency 1 1 E
o Due to delay spread 61 ] '
. 1 2 2 p 5 p 0
o Coherence bandwidth, W, = Py S ——
o Frequency over which channel changes significantly
coh
~ 5ms

20 path random channel with
6f =100 Hz, 6t =100 ns
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Flat vs. Frequency-Selective Fading

dSuppose we transmit a coding block Flat
o Tin time and W in bandwidth

o T X W region in time and frequency i E

dFlat fading: W <« W,y
o Channel does not vary in frequency over coding block

J'-‘-/D

T
i L E
= h

»
<] o
T T

d
<

Freq [MHz]

s
L]
T

-
=
T

-15

-20
10

Frequency selective fading: W = W,

Frequency selective
o Channel varies over frequency
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Slow vs. Fast Fading

dSuppose we transmit a coding block
o Tin time and W in bandwidth

o T X W region in time and frequency
Slow

<] o L P2 (=]
T T T T

Freq [MHz

dSlow fading: T K T,,p,
o Channel does not vary in time over coding block

-
=
T

Fast

-y
(=]

-
o

)
=]

Time [ms]
| |

QFast fading: T = T,p
o Channel varies over frequency Teon

A
\ 4
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Summary: Four Regimes

Transmission s_ :
bandwidth W/ ¥ | B
Slow, ' Fast, 2 - |
Frequency " Frequency Sup 1
selective | selective . | N .
Weon -----f------------- i’ """""" ’Sh ) '
S/OVV, : FOISt, 200 > "1 é é e 20
Flat i Flat Time [ms]
: Transmission
Teon time T Coding block
1,4

4
v
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Regimes to Model Coding

o dTo analyze fading, consider two extreme cases
Transmission

bandwidth W
Flat and slow fading over coding block:
Slow, ' Fast, o Channel is flat and slow fading over coding block
Frequency Frequency o All symbols see approximately same fading
selective | selective
Wcoh """""""""" 1:' """"""

ZZ?” i Z'Sf' Q11D fading in coding block:

. ‘ o Channel fades in time and/or frequency over block

o o Fast and/or frequency selective

Transmission

Teon time T > Model as large number of independent fades
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Analysis of Coding with Flat and Slow Fading

Coding block sees an SNR ¥

SNR y varies but is constant over each block
o Transmission time << Coherence time

o Transmission bandwidth << Coherence bandwidth

Suppose code has some target SNR y; ¢
o Target could be based on some block error probability

dAssume y has some distribution

UOutage probability: P,,; = P(y < )/tgt)
o The fraction of time target is not met
o Can be computed from the distribution of y

TANDON SCHOOL
OF ENGINEERING

Freq [MHz]

@

w©

)
o

N [X] o o™ @ S (8] o
T T T T T T

-

Coding block

I R
-

N -10

: -20

4 6 8 10
Time [ms]

o
8]



Outage Probability for Rayleigh Fading

(JSuppose a channel is Rayleigh fading

CISNR y is exponentially distributed with some mean y

_Ytgt

(Outage probability: P,,; = P(y < ytgt) =1—e ¥

Ytgt
In(1-Pgyyt)

(JAverage SNR for a given outage probability: y = —

JFade margin: Additional SNR needed above target for a given outage probability:
o In linear scale: .- = — — Y9t o 2
Ytgt In(1-Ppyt) Pout

°c IndB:y = Vigt — 101og10(Pout)
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Fade Margin Example

QExample: Ml
o Target SNRis y¢4: = 10 dB
o Qutage probability: P,,; = 0.01 2
JFrom previous slide, necessary average SNR is: i;
Y = Yege — 10 log10(Pout) Pour —%
= 10 — 10log,,(0.01) = 30 dB oy N
dThe average SNR needs to be 20 dB above target! 10 P e M
Hade [dB]
Plot: Fade margin vs. outage
QFade margins with Rayleigh fading can be enormous! Fade=0 Max fade
Y = Yigt
20 dB fade
margin
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Outage Capacity

(dSuppose we can achieve some rate R(y) as a function of SNRy
(dWhen SNR y is random, so is the rate R(y)

dOutage capacity: Rate, R,y We can achieve with a probability P,,;
Pout = P(R(Y) < Rout)

JExample:
o Suppose system has 20 MHz bandwidth and the rate is 60% of Shannon capacity

o The average SNR is 20 dB.
o What is the outage capacity for 1% outage assuming Rayleigh fading?

(JSolution:

o From earlier, for Rayleigh fading, the SNR achievable at the outage probability is
y =y +10log19( Pyyt) = 20+ 10log15(0.01) =20—-20=0

° Inlinearscale,y =1
o Qutage capacity: R,,; = 0.6(20)log,(1+ 1) = 12 Mbps
o At the average SNR the rate is R = 0.6(20) log, (1 + 100) = 80 Mbps
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System Implications for Outage

dWith flat and slow Rayleigh fading, need to add large fade margin

Channel coding does not mitigate fading
o Fading causes all bits to fail

o Still may be useful to use channel coding (e.g., for noise across the symbols)

dPossible solutions?
o |f there is motion, perhaps we can retransmit later
o Go to a lower rate (needs less SNR)
o Just accept that some locations are in outage

JSome of these solutions are discussed in the next unit
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IID Fading Model

dCoding block with fast and/or frequency selective fading

Coding blocks with
dSimple mathematical model: fast and/or frequency selective fading

r|n] = h[n]s[n] + w[n], n=1,..,N

(e]

Each r[n] is a symbol in time and frequency
Assume channel gains h[n] are i.i.d. with some distribution
w[n]~CN(0, Ny) and E|s[n]|? = E,

Each symbol experiences an SNR ys[n] =

o
© © o & N O

Freq [MHz]

(¢]
2R

|h[n]|?Es L
NO 18

o

[¢]

Number of symbols N — oo

Time [ms]

JAssumption implicitly assumes:
o We have a very large coding blocks in time or frequency
o Can experience many independent fades
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Ergodic Capacity

Q11D fading model: r[n] = h[n]s[n] + w[n], w|n]~CN(0, N,)

o Channel gains h[n] are i.i.d. with some distribution

Ergodic capacity: Theoretical maximum rate per symbol
> Assume average transmit power limit E|s[n]|? = Ej

o Maximum taken over all codes and blocklength
o No computational limits

Freq [MHz]

dTheorem: Ergodic capacity of an IID fading channel is:

“;ime[ms.]
h|?E
[ C = Ellog(1 + y)], V=|]|V : }

0

o Value is in bits per symbol
o Expectation is over channel distribution h
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Shannon Ergodic Capacity Key Remarks

JFrom previous slide, ergodic capacity is:

|h|?E
C=Ellogl1+y), v=
Ny
Theoretical result: Needs infinite computation and delay
o We will look at performance of real codes next

(

1

N
I
=3
o
[]
=
L

JTX does not need to know channel h! _ |
o But RX must estimate and use this channel. : &
o We will see RX design is critical

Time [ms]

QIf TX knew the channel, it could get theoretically get slightly higher rate
o Uses a method called water-filling

o Place more power on symbols with better SNR.

o Gain is not typically large and rarely used in practical wireless systems
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Comparing Ergodic and Flat Capacity

dFading capacity is always lower than flat fading
o Keeping the same average SNR the same

o This fact follows from Jensen’s inequality:

AWGHN
Rayleigh

C = E[log(1 + )] < log(1 + E()) = Cawen

But gap is not that large at low to moderate SNRs
o See graph to the right. Loss of only 1-2 dB in

Capacity [bps/Hz]

dConclusions:
o We should try to code over large number of fading realizations
o In this case, the capacity loss is theoretically small
o Much better than the case of uncoded modulation U:

-3 0 5 10

Es/NO Average [dB]

dWe will look at practical codes next
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Small-Scale and Large-Scale Fading

dUp to now we have considered variations due to small scale fading
o Variations from constructive or destructive interference of multipath components Small scale

o May or may not cause variations within a coding block region
o Ex: Variations within a few wavelength in one location in the office area

(dMost scenarios also have variations due to large scale fading:
o Changes in distance-based path loss, shadowing, angles, ...

o Typically occur at slower time scales (100s of ms or more)

o Rarely causes variation over a coding block (typically 10s of ms or less)
Large scale

o Ex: Moving within the office space to the right :
region
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Analysis with Small- and Large-Scale Fading

Suppose SNR varies as y (u, v):
o u: Vector of large-scale parameters, e.g., distance, angles, shadowing, etc.

o v: Small-scale parameters, e.g., time-frequency location of a degree of freedom

QIf fading in each coding block is slow and flat:
o Each coding block has an SNR y (u, v)
o Can compute outage probability: P(y(u,v) < Yegt)
o Probabilities computed over small-scale and large-scale parameters

QIf fading in coding block can be modeled as large number of i.i.d. samples of v:
o Ergodic capacity is R(u) = E,(log(1 + y(u, v))
o Take average over small-scale, but NOT large scale
o Rate is a function of u
° Then outage probability is: P(R(u) < R¢4¢)
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Example: Rate CDF Calculation

Large-scale model:

2
> SNR due to large scale variations y(d) = y, (%) [Simple model just for exercise]

° ¥o=10dB and dy =100 m
o Distances vary d uniformly in [50,200]m L

dSmall scale model:
o Variation within a location is Rayleigh

> SNR at a particular time-freq DoF will be y = y(d)v -
° v can be modeled as exponential S os |
0.4
Plotted:

o SE under a constant model (slow and flat fading)
o SE under IID fading at each distance d

Constant in block | -
D fading in block

JSee demo 6§ 1 1B 8§ 4 & € 7 &
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In-Class Exercise

Problem 2: Outage Capacity in an Indoor Environment
In this problem, we will estimate the outage capacity in an indoor setting. Our goal is to look at the effects of both large-

scale and small-scale fading.

First generate nx locations in a box of size 30 x 40 m representing locations in some large indoor environment. Assume
an access point is located at the origin and compute a vector, dist, representing the distance in meters from the AP to

each location.

10% ¢
% Parameters E Large scale fading
nx = laaaa; I Large+small scale fading
xmax = [3@8,48];
d = 2;
107" 1
dindoor environment 2
dLook at large scale and small-scale fading =
1072 3
103! :
0 10 20 30 40 50 60 70 80

Rate (Mbps)
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Outline

dUncoded Modulation over Fading Channels

(JOutage Probability and Ergodic Capacity

AReview: Coding over an AWGN Channel
Coding over Fading Channels
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Coded Communication on an AWGN Channel

™ Channel with

Info bits RX :
_____ Coded ' Info bits
blk] :- Ibit(; CGEk] symbols ———— symbols LLR[k b [k]
I : s[n] r[n] [k]
' I
[
[
[
I Channel : Symbol Soft symbol Channel
: coding | mapping demodulation decoder

dWe first review channel coding on a flat channel:

r[n] = s[n] + w[n], w[n]~CN (0, Ny)
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Uncoded vs. Coded Modulation

Uncoded Modulation:

Symbol :> _ . ‘
Info bits :> mapping Complex > Modulate raw information bits

symbols

o One symbol at a time.

o Any symbol isin error, data packet is lost!

Coded modulation:
|:> Coding |:> Symbol | > .
mapping o Transmit in blocks (also called frames)
] o Add extra parity bits to each block for reliability
: o Decode entire block together
Info bits Info Parity Block of c | c 8
block symbols
Coded bit
block
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Key Parameters of Block Codes
\_> Coding \_>

k information bits
“message”

k info bits n-k parity

“Bit Codeword” : n coded ‘
bits

AN (n, k) block code has:
o k = number of information bits (input block size)
> n = number of coded bits (output block size)
o n — k = number of additional bits, typically parity
° R, = coding rate = k /n.

dTypical values in wireless:
o Block size: k = 100 to 10000

1 5
o Code rate: —to -
3 6
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Coded Communication on an AWGN Channel

: Channel s T T T T T T T T
Info bits Coded TX Vith noise : RX I Info bits
b[k] bits c[k] symbols ;symbols I b [k]
s[n] 1 T[n] LLR[X] |
- I g
| |
Channel Symbol : Soft symbol I Channel
coding mapping I demodulation :decoder
I

——————————————

dWe first review channel coding on a flat channel:

r[n] = s[n] + w[n], w[n]~CN (0, Ny)
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Soft Symbol Demodulation

Cll ...,CK . SymbOI S . Soft LLR]_, ...,LLRK -
mapping demod

v
B—
=
I
1%5)
_|_
S

(dSet-up: Coded bits (¢4, ..., cx) get mapped to symbol s
o Receiver =s+w, w~CN(0,N,)

dUncoded systems use hard decision detection:
o Estimate bits (¢4, ..., Cx) from symbol s
o Makes a discrete decision.

(dCoded systems generally use soft decision demodulation:

. - — . P(r|ck=1)
Output log likelihood ratios: LLRj, = In P(rlox=0)
o LLRj positive = ¢, = 1 more likely

o LLRj negative = ¢, = 0 more likely
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LLR for QPSK

OTX symbol: s = +A +id, A = \/% Mapping of bits (cq, ¢1)

ARX symbol: r =s+w, w~CN(0,N,) So = Im(s)
LLLR for bit ¢, 01 11
A c¢o=1
° S| = Re(S) — {_A CS _ O L i

s; = Re(s
o 1= s;+w;, w~N(0,%2) [Each dim has -] 1 = Re(s)

Likelihood: p(ryls;) = —=€Xp [_N_O(TI _ 51)2]

(e]

— 1) p(‘r |S — A) L] [
o LLR =l p(rI|C0 =l I1°1
0= Molrilco = 0) — " p(rls; = —4) 00 10
> With some algebra: LLR, = 221 = 2 |55,

No  Ngnl 2
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QPSK LLR Visualized

Mapping of bits (cq, ¢
LLR, PpINg (co,€1)

5o = Im(s)
/ 01 11
> ']"I [ ] L ]
Co = 1 / Co = 1 s; = Re(s)
more likely
L J

more likely

ALLR for cg is: LLRy = Ni\/%r,
0

ALLR for ¢y is: LLR, = Ni\/%rQ

0
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High Order Constellations

dHigher order constellations (eg. 16- or 64-QAM) Mapping of bits (cq, ¢5, 3, C4)
(JEach constellation r is a point is a function of multiple bits. 16-QAM
QExample: For 16-QAM . I )
° In phase dimension 17 depends on bits (¢, ¢1) 2w g | iy
(dCannot compute LLR on an individual bit directly ,:
Inphase component
00 01 11 10

Two bits: o o ° ° r=s+n
(Cll CZ)
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High Order Constellations

. S00 S10 S11 So01 —
Two bits: r=s+n
o o o o
(C1;Cz)

To create LLRs for individual bits use total probability rule:

1
p(ricy) = E(P(T|C1»Cz =0) +p(rlcy,c; = 1))

(dResulting bitwise LLR:
rlici,co, = 1,0) + n(r{c,,c, = 1,1
LLRforclzlogp(ll 2 ) +p(rley, ¢y )
p(r|cy, ¢, = 0,0) + p(ri|cy, c, = 0,1)
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High Order Constellations

) S00 S10 S11 So01 —
Two bits: r=s+n
@ @ @ o

(C1; CZ)

LLR for c2 LLR for c1
LLRs can have irregular shapes

&

I Not simple linear function as in BPSK / QPSK case

JOften use approximations

dMore info: Caire, Taricco and Biglieri, “Bit-
Interleaved Coded Modulation," 1998.
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Coded Communication on an AWGN Channel

Channel

I

Info bits Coded TX with noise RX : Info bits !
blk] bits c[k] symbols symbols :LLR[k] b [k] :
s[n] r[n] l I

T | |
Channel Symbol Soft symbol ! Channel :

coding mapping demodulatlori decoder I

dWe first review channel coding on a flat channel:

r[n] = s[n] + w[n], w[n]~CN (0, Ny)
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Maximum Likelihood Channel Decoding

Channel

TX : ) RX :
Info bits Coded symbols with noise symbols Info bits
b bits ¢ LLR[k] b [k]
Channel Symbol § r Demod Channel
coding mapping decoder

dChannel coding: Information block: b = (b, ..., bx) generates a codeword ¢ = (¢4, ..., Cy)
Receiver gets a vector r = (14, ..., 1), L = number of complex modulation symbols
dChannel decoder: Goal is to estimate b (or equivalently c¢) from r.

dldeally will use maximum likelihood decoding:

¢ = argmaxlogp(r|c)
c

o Finds the codeword that is most likely given the receive vector
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Decoding via the LLRs, Part 1

(dChannel decoding: Ideally select codeword to maximize ¢ = arg maxlogp(r|c)
c

Equivalently we can maximize: ¢ = arg max[logp(r|c) — logp(r|c = 0)]
c

o Highest likelihood relative to the all zero codeword

Assume likelihood factors as: logp(r|c) = %’zllogp(ra(nﬂcn)
° Tg(n) IS the complex modulation symbol containing coded bit ¢,

dHence, objective is:
> logp(r|c) —logp(ric =0) .

p\r c
— Z[lOgP(TJ(n)lCn) — logp(ra(n)lcn = 0)] — Z log ( O'(Tl)| n)

] L p(remlen = 0)
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Decoding via the LLRs, Part 2

p(romlcn)
p(ra(n)|Cn = O)

QFrom previous slide ¢ = argmax YY_, log
c
But since c,, = 0 orc,, = 1:

p(ra(n)|cn) _ p(ra(‘n)|c‘n = 1) _
= ¢, log =
p(ra(n)|cn = 0) p(ra(n)|cn = 0)

(dHence, the channel decoder can find the codeword by maximizing:

log LLR,

N
¢ = arg max Z c,LLR,

c
n=1
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Decoding Complexity

dChannel decoding ideally selects codeword N

¢ = arg max 2 c,LLR,
‘=
Brute force optimization is exponentially difficult:
o Suppose the information block is b = (by, ..., bx)
o Each b generates one codeword ¢ = (¢4, ..., Cy)
o Optimization must, ideally, search over 2% possible codewords ¢

o Computationally impossible

dCoding design requires searching over coding mechanisms with:
o Computationally tractable decoding
o But still have good performance

@ TANDON SCHOOL
NYU | Zroonssioo




Quest for the Shannon Limit

dShannon capacity formula and random codes, 1948.
o Determines the capacity, but no practical code to achieve it.

dHamming (7,4) code, 1950

(JReed-Solomon codes based on polynomials over finite fields, 1960
o Used in Voyager program, 1977. CD players, 1982.

Convolutional codes.
o Viterbi algorithm, 1969. Widely used in cellular systems. (Viterbi later invents CDMA and founds Qualcomm)

o Typically, within 3-4 dB of capacity

Turbo codes, Berrou, Glavieux, Thitimajshima, 1993.
o Able to achieve capacity within a fraction of dB.
o Adopted as standard in all 4G and 5G cellular systems by the late 1990s.

LLDPC codes
o Similar iterative technique as turbo codes. Re-discovered in 1996.

o Used in 5G systems
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Convolutional Codes

(JEncode data through parallel binary (usu. FIR) filters —, Gl
(JExample convolutional code: L1 B ey ey o / N
o Rate = % (two output bits (c1[t], c2[t]) for each input bit b[t]. ~san " Code digits
) %)

o Constraint length K=3 (size of shift register)
o Additions are modulo two

c.[t] = b[t] + b[t — 1] + b[t — 2]

dBenefits: c,[t] = b[t] + b[t — 2]

o Easy to implement, good performance

o Can be decoded with Viterbi algorithm
Iterative procedure similar to dynamic programming procedure

o See digital comm class for more details
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Convolutional Code Performance

10!

102

1

1o

Probability of bit error, Py,

Rate 173, K =41

sequential

—=Rate 172, K =41

sequential

—Rae 172, k=7
Viterhi, soft decision

-Rate 173, K=T7
Viterbi, soft decision

Rate 12, K=
Viterbid, hard decizion

—Rate 1/3, K =17
Witerhi, hiard decision

Unceded BPSR

TANDON SCHOOL
OF ENGINEERING

& " 1 | I 14
SME per bid, 35, (dB)

dConvolutional codes performance:
o >5 dB better than uncoded BPSK at low BER

dOnly moderate constraint length (K=7) needed

dSource: Proakis, “Digital communications”



Simulation in MATLAB

(MATLAB has excellent tools 2 EE R [ ik
bitsIn = randi([@,1], nbits, 1);

o Conv encoder / decoder

# Convolutionally encode the data
o LLR bitsEnc = convEnc.step(bitsIn});

% Q&M modulate
txSig = gammod(bitsEnc, M, 'InputType', 'bit', 'UnitAveragePower',true);

(JSee demo

% Add noise

rate = nbits/length(bitsEnc);

Es = mean(abs(txSig)."2);

EsNeé = EbNe + 18*logl8(rate*bitsPerSym);

chan = comm.AWGNChannel( 'NoiseMethod', 'Signal to noise ratio (Es/Ho)’,
"EsNo', EsN@, 'SignalPower', Es);

rx5ig = chan.step(txSig);

BLER

% Compute LLRs

102F 1 noiseVar = Es*db2pow(-EsNB};
Rate=1/2, QPSK; 1llr = gamdemod{rxSig,M, 'OutputType', "approxllr’,
K=7 conv COde UnitAveragePower’ ,true, MNolseVarlance' , nolseVar),;
103 | | | | | | | | % Run Viterbi decoder. We remove the tail bits
o 05 1 15 2 25 3 35 4 45 5 bitsout = convDec.step(llr);
Eb/NO [dB] bitsOut = bitsOut(l:nbits);
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Turbo Codes

Turbo codes:
o Concatenation of two convolutional codes

e « Outpus Typically IIR and short (K=3)
o Interleaver: Randomly permutes the input bits

L comvokuions] dOutput

| mmll ity chec ° |nput bit, and
Presdoaados " ontions 0 o Parity bits from each convolutional encoder

\ength = N | punctring s O o With no puncturing R=1/3
bits 2
| e (Discovered in 1993, ,
encoder 2 o Berrou, Glavieux, Thitimajshima, 1993.

o Able to achieve capacity within a fraction of dB.

(JUsed in 3G and 4G standards
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Turbo Code Iterative Decoding

T rr— Turbo decoder uses an iterative message passing
Ryl S e . : :
RN heron - o Decode each convolutional coder one at a time
ol l‘]"\ VNN _ > Use posterior information of one code as prior for the other
% 0.0001 |- \ | \\\ \\\\ N
' ll VLN ' JGood performance in small number (usu. ~8) iterations
- \}\\ _ o Typically use short codes (K=3).
S T S S S— > Complexity similar to convolutional codes
N Ey /Ny (dB) 4
T Close to Shannon capacity
R > Much better than convolution codes
le—03 ! _
%
eosl 5| |5 k‘mk Source: Lin, Costello, “Error Control Coding”
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LDPC Codes

LDPC Graph QCode defined by a bipartite graph
L1 Coded bits o Connects n coded bits and n — k parity bits

o Data k information bits

JAlso use a message passing decoder
o Based on graphical models

Parity check bits _
Y (JObtains excellent performance

(b) Frame error rate .
1o w0 o Lower complexity than turbo decoder
LY —HY (ess06301)
10" a -,I.;ri:ggtgsgg:ggg;iﬁg;ﬂ o Good for very high data rate applications
i ',i | —Shannon Limit ,
10k B T | . .
g i Used in 802.11ad and 5G New Radio
10° b |
i i i
- 10"‘_ ‘:;'EE _1
5t
10 I‘LI'| 1
8




In-Class Problem

Problem 3: NR LDPC Coding
In this problem, we will simulate the LDPC encoding and decoding used in the 5G NR standard. The MATLAB 5G Toolbox has an amazingly good
implementation of this code, so we can just call it. In the NR LDPC code, the number of input bits is given by:

nbitsIn = nrows*nlift;

where nrows is the number of rows in the LDPC base graph, and nlift is the so-called lifting factor which expands the graph to different block sizes. We
will use the following parameters:

10°
bgn = 1; % LDPC base graph number (1 or 2)
nrows = 22; % number of rows in the base graph
nlift = 128; % lifting factor

number of input bits
max number of LDPC decode iterations

nbitsIn = nrows*nlift;
maxNumIters = 8;

o
/o
o
4o

BLER

dSimulate the commercial 5G NR LDPC code ot
o A rate 1/3 code
o Much better performance than convolutional code

0 0.5 1 15 2 25

Eb/NO [dB]
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Outline

dUncoded Modulation over Fading Channels

(JOutage Probability and Ergodic Capacity
dReview: Coding over an AWGN Channel

¥Coding over Fading Channels
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Coded Communication on a Fading Channel

Info bits ,
blk] 1 /\\m\v ATANALTAR , Info bits
; Channel | Inter- R Symbpl |, Voo | .Equ_al- ,| De-inter- R Channel 5 (k]
encoder leaver mapping | ization leaver decoder
\ Y J Fading channel \ |
New block !
New blocks

Now consider fading channel: r[n] = h[n|s[n] + w[n], w|[n]~CN(0, N,)

To handle fading we need to introduce a few new blocks
o Interleaving and de-interleaving
o Equalization
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Symbol Equalization via Inversion

(JReceived noisy symbol:
r=hs+w, w~CN(0, Ny)

Symbol equalization:
o Estimate s from r
o Also obtain a noise estimate (needed for LLR)

Channel inversion:

o Symbol estimate § =

TANDON SCHOOL
OF ENGINEERING

w
r
— —

Symbol
Equalization

\M,




MMSE Symbol Equalization

(JReceived noisy symbol:
r=hs+w, w~CN(0, Ny)

w
UMMSE estimation: X
. . A S r S
o Use linear estimate § = ar — 3l h P — Syn-1bo.l I
L Al2 2 Equalization
o Select a to minimize E|s — §|* = E|s — ar|

JResulting estimate (shown with simple algebra):

- R Esh”
o Estimate: § = ar, a= |h|22‘ +N
S 0
_ _ . EgN
> Noise variance: E|s — §|* = —Ihlzz“ iN
S 0

Provides lower noise estimate than channel inversion
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Interleaving and De-Interleaving

dProblem: Fading is correlated in time i ——
> Will result in many consecutive faded bits | inter- | Y ”v’ W \V’ \ De-
o Many codes perform poorly if errors are together leaver | Interleaving
interleaver
o Shuffles the bits before symbol mapping
o De-interleaving is performed on LLRs
° Randomizes Iocations Of errors Type of Interleaver Interleaver Function
. . General block interleaver intrlv
o Removes time correlations Aoebraic o
gebraic intereaver algintrlv
(Many interleavers used in practice
. . Helical scan interleaver helscanintrly
o Random interleaver (with some seed at TX and RX)
o Row—column interleavers... Matrix interleaver matintrlv
Fandom interleaver randintrly
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Simulation

Conv K=7, QPSK, Rate=1/2 Simulation:

1079

1 NaF

o Convolutional code, rate % with QPSK
o Constraint length K =7

o Plotted is block error rate (BLER) vs. %
0

BLER

JGap between AWGN and fading:
o Approximately 4 dB at BLER = 1072
o Much smaller gap than uncoded modulation

| |—®—AWGN
—e&— Fading

0 2 e G 8 10 12

Eb/NO [dB]
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Simulating in MATLAB

dTransmitter and Channel Fading

% Generate random bits
bitsIn = randi([®,1], nbits, 1);

# Convolutionally encode the data
bitsEnc = convEnc.step(bitsIn);

% Random interleaver
state = randi(2°16,1);
bitsInt = randintrlv{bitsEnc,state);

% 0AM modulate
txSig = gammod(bitsInt,M, "InputType', 'bit’, 'UnitAveragePower',true);

% Add fading
nout = length(tx5ig);
it fading
h = sqrt(1/2)*(randn{nout,1} +li*randn{nout,1)};
else
h = ones(nout,1});
end
rx5igh = h.*txS5ig;

TANDON SCHOOL
OF ENGINEERING

(JChannel Noise and Receiver

# Pass through AWGN channel
rxSig = chan.step(rxSigd);

% MMSE Equalize

wvar = Es*18.~(-8.1*Eshe);

z = conj(h).*rxSig ./ (abs(h).”2 + wvar);

svar = 1;

noiseVar = wvar®svar./(wvar + svar*abs(h)."2);

# Compute LLRs
11rInt = gamdemod(z,M, 'OutputType', "approxllr’,
"UnitAveragePower ' ,true, '"NoiseVariance', noiseVar);

# De-interleawve
11r = randdeintrlv(1llrInt,state);

% Run Viterbi decoder
bitsOut = convDec.step(llr);
bitsOut = bitsOut(1l:nbits);




Summary

dFading: Causes variations in SNR

dUncoded modulation:
o Dramatically increases error rate x
o Must add significant fade margin

dCoding with flat and slow fading

o All symbols are faded together
o Fade margin still necessary

Coding with fast or frequency-selective fading
o Can greatly mitigate fading
o Recover faded bits with redundancy
o But needs to encoded over many independent fades
o Transmit over many coherence or bandwidth
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