Lab: 5G Channel Sounding with Doppler

Channel sounders are used to measure the channel response between a TX and RX. These are vital to
study propagation and are also an excellent tool for debugging the front-end of a transceiver system. In
this lab, we will simulate a simple channel sounder over a fading channel with time-variations and
Doppler. The very same tools are used in radar.

The digital communications class covered a simpler version of this lab with a static channel.
In doing this lab, you will learn to:

» Describe cluster-delay line (CDL) models

» Get parameters for 5G CDL models using the 5G MATLAB toolbox

» Represent antenna orientations using global and local frames of reference.
« Compute directional gains on paths from the angles

» Implement multi-path fading channels

« Perform simple time-frequency channel sounding

Submission: Complete all the sections marked TODO, and run the cells to make sure your scipt is
working. When you are satisfied with the results, publish your code to generate an html file. Print the
html file to PDF and submit the PDF.

Loading the 3GPP NR channel model

In this lab, we will simulate a widely-used channel model from 3GPP, the organization that developed the
4G and 5G standards. Specifically, we will use the 5G New Radio cluster delay line model. In the CDL
model, the channel is described by a set of path clusters. Each path cluster has various parameters such
as an average gain, delay and angles of arrival and departure. The parameters for this model can be
loaded with the following commands that are part of the 5G Toolbox.

fc = 28e9; % carrier in Hz

dlySpread = 50e-9; % delay spread in seconds

chan = nrCDLChannel('DelayProfile’,'CDL-C',...
'DelaySpread',dlySpread, 'CarrierFrequency’', fc,
‘NormalizePathGains', true);

chaninfo = info(chan);

After running the above commands, you will see that the chaninfo data structure has various vectors
representing the paramters for each path cluster.

R

TODO: Extract the parameters from chaninfo:
gain = average path gain in dB
a0aAz = azimuth angle of arrival
aoaEl = elevation angle of arrival = 90 - ZoA
aodAz = azimuth angle of departure
aodEl = elevation angle of departure = 90 - ZoA
dly = delay of each path

3% 3R 3% R R X
Il

% TODO: Compute and print npath = number of paths

R

TODO: Use the stem() command to plot the gain vs. delay.

Each stem in this plot would represent one multi-path component.
Set 'BaseValue' to -40 so that the stems are easier to see.

% Label the delay in ns.

3R R X

Patch Element

In this simulation, we will assume the TX and RX patch microstrip antennas. We use the code below to
create the antenna element from the antenna demo.

% Constants
vp = physconst('lightspeed'); % speed of light
lambda = vp/fc; % wavelength

% Create a patch element

len = 0.49*1ambda;

groundPlanelLen = lambda;

ant = patchMicrostrip(...
"Length', len, 'Width', 1.5*1len,
‘GroundPlanelLength', groundPlanelen,
'GroundPlaneWidth', groundPlanelen,
'Height', @.01*1lambda,
'FeedOffset', [0.25*1len @]);

% Tilt the element so that the maximum energy is in the x-axis
ant.Tilt = 90;
ant.TiltAxis = [0 1 0];

Create UE and gNB antennas

We will simulate a channel from a base station cell to a mobile device. In 5G terminology, the base
station cell is called the gNB and the mobile device is called the UE (don't ask!). We first create a model
for the antennas on each device. In reality, both would have an array of elements, but we will just
assume one element for each now.

To organize the code better, we have created a class ElemWithAxes to represent the antenna element.
This class is basically a wrapper for the AntennaElement class to include a frame of reference and
methods to compute gains relative to this frame of reference.

% TODO: Complete the code for the constructor in the ElemWithAxes class

3R

TODO: Create two instances, elemUE and elemgNB, of the ElemWithAxes
class representing the elements at the UE and gNB.

elemUE = ElemWithAxes(...);

elemgNB = ElemWithAxes(...);

3% R X

Rotate the UE and gNB antennas

The response of the channel will depend on the orientation of the antenna elements. To make this
simple, we will assume the UE and gNB elements are aligned to the strongest path. Note that when
modifying a class you will need to re-run the constructor.

% TODO: Complete the code in the setupImpl() and
% stepImpl() method of ElemWithAxes.

% TODO: Find the index of the path with the maximum gain.

% TODO: Call the elemUE.alignAxes() methods to align the UE antenna
% to the angle of arrival corresponding to the strongest path.

% TODO: Call the elemgNB.alignAxes() methods to align the gNB antenna
% to the angle of departure corresponding to the strongest path.

Get the directivity along the paths

We next compute the directional gains along to the paths. The ElemWithAxes class is derived from a
MATLAB system object, which is MATLAB's base class for objects that can handle dynamic data. In
constructing link-layer simulations, it is useful to build your classes as system objects. The key method
in a system object is the step() method that is called in each chunk of data. In the derived class, you
define the stepImpl() method which is in turn called in the step method. For the ElemWithAxes class,
we will define the step methodto take angles and return the directivity in dBi.

% TODO: Complete the code in the stepImpl() method of ElemWithAxes.

% TODO: Call the elemUE.step() method with the angles of arrivals of the
% paths to get the directivity of the paths on the UE antenna.
% dirUE = elemUE.step(...);

% TODO: Call the elemgNB.step() method with the angles of departures of the
% paths to get the directivity of the paths on the gNB antenna.
% dirgNB = elemUE.step(...);

% TODO: Compute, gainDir, the vector of gains + UE and gNB directivity.
% gainDir = ...

R

TODO: Use the stem plot as before to plot both the original gain and
gainDir, the gain with directivity. Add a legend and label the axes.
You will see that, with directivity, many of the paths are highly
attenuated and a few are amplified.

3R R X

Compute the Doppler

We next compute the Doppler for each path.
% TODO: Complete the doppler method in the ElemWithAxes class

% TODO: Use the elemUE.set() method to set the mobile velocity to 100 km/h
% in the y-direction. Remember to convert from km/h to m/s.

% TODO: Call the elemUE.doppler() method to find the doppler shifts of all
% the paths based on the angle of arrivals

Transmitting a channel sounding signal
The code is based on the lab in digital communications. As described there, the TX simply repeated
transmits a signal of length nfft. Each repetition is called a frame. We will use the following parameters.

fsamp = 4*120e3*1024; % sample rate in Hz
nfft = 1024; % number of samples per frame = FFT window

nframe = 512; % number of frames

In frequency-domain channel sounding we create the TX samples in frequency domain.

IS

TODO: Use the gammod function to create nfft random QPSK symbols.
% Store the results in xOFd.

R

3R

TODO: Take the IFFT of the signal representing the time-domain samples.
Store in x@.

3R

R

4 TODO: Repeat the data x0 nframe times to create a vector x of length
6 nframe*nfft x 1.

R

Create a multi-path channel object

To simulate the multi-path channel, we have started the creation of a class, SISOMPChan. The constructor
of the object is already written in a way that you can call construct the channel with parameters with the
syntax: chan = SISOMPChan('Propl', Vall, 'Prop2', val2, ...);

% TODO: Use this syntax to construct a SISOMPChan object with the sample
% rate, path delays, path Doppler and directional gains for the channel

Implementing the channel
The SIMOMPChan object derives from the matlab.System class and should implement:

o setupImpl(): Called before the first step after the object is constructured
e resetImpl(): Called when a simulation starts

e releaseImpl(): Called on the first step after a reset() or release()

e stepImpl(): Called on each step

% TODO: Complete the implementations of each of these meth

% TODO: Run the data through the step.

% TODO: Add noise 20 dB below the y

Estimating the channel in frequency domain

We will now perform a simple channel estimate in frequency-domain

TODO: Reshape ynoisy into a nfft x nframes matrix and take the FFT of
each column. Store the results in yfd.

TODO: Estimate the frequency domain channel by dividing each frame of
yfd by the transmitted frequency domain symbols x@Fd. Store the results
in hestFd

TODO: Plot the estimated channel magnitude in dB. Label the axes in
time and frequency

Estimating the channel in time-domain
We next estimate the channel in time-domain

3% R

3R R X

(]

TODO: Take the IFFT across the columns and store the results in a
matrix hest

TODO: Plot the magnitude of the samples of the impulse response
in one of the symbols. You should see a few of the paths clearly.
Label the axes in delay in ns.

Bonus: Viewing the channel in delay Doppler space
Finally, we can estimate the channel in the delay-Doppler space. This is commonly done in radar and we
will use the exactly same procedure here. In the frequency domain response, hestFd, each path results

in: *

Linear phase rotation across frequency due to delay of the path * Linear phase rotation across time

due to Doppler Hence, we can see the paths in the delay-Doppler space with a 2D IFFT.

%

3 3% 3R 3% of R 3 ¥ X

3R X

TODO: Take a 2D ifft of hestFd and store in a matrix G.

We can now extract the delay-Doppler components from G.
Most of the interesting components in a small area:

nrow 64;
ncol = 32;
Gs = [G(2:nrow,nframe-ncol:nframe) G(1l:nrow,1l:ncol)];

TODO: Plot the magnitude squared of Gs in dB using imagesc. Label the delay
and doppler axes. You should see the components clearly.

We can even compare the peaks in the matrix Gs with the delay and Doppler
of the actual components.
TODO: Find the indices of the paths with top 20 directional gains.

TODO: On the same plot as above, plot a circle corresponding to the
(doppler,delay) for each of the top components. You may have to reverse
the doppler due to the sign conventions we have used.

