Multiple Antennas and Beamforming

EL-GY 6023. WIRELESS COMMUNICATIONS PROF. SUNDEEP RANGAN

Outline

Antenna arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain
\square Array Factor
\square Multiple paths and Diversity
\square Transmit Beamforming

Antenna Arrays

Antenna arrays: Structure with multiple antennas- At TX and/or RX
- Key to 5G mmWave and massive MIMO
\square Two key benefits
\square Beamforming: This lecture
- Concentrate power in particular directions
- Increases SNR and may enable spatial diversity
- Requires arrays at either TX or RX
\square Spatial multiplexing: Next lecture
- Enables transmission in multiple virtual paths
- Increases degrees of freedom
- Requires multiple antennas at both TX and RX

IBM 28 GHz array 32 element dual polarized array Sadhu et al, ISSCC 2017

Aurora C-Band Massive

 MIMO array64 elements, $5-6 \mathrm{GHz}$
https://www.taoglas.com/

Multiple Receive Antennas

\square Single Input Multiple Output

- One TX antenna
- M RX antennas
\square Transmit a scalar signal $x(t)$

\square Receive a vector of signals:
- $\boldsymbol{r}(t)=\left(r_{1}(t), \ldots, r_{M}(t)\right)^{T}$
\square What is the channel from $x(t)$ to $\boldsymbol{r}(t)$?
\square Want channel in complex baseband

Channel vs. Position

\square To understand SIMO channel, consider single path channel

- AoA of θ relative to z-axis
- Delay τ_{0} to origin
- Gain A is constant close to origin
\square Transmit signal $s(t)$ and look at response at position x
\square Consider a $R X$ position close to origin

- $\mathrm{B}|x| \ll f_{c} \lambda, B=$ bandwidth of $s(t)$
\square Phase rotation with displacement:
- Baseband response at x is (proof on next slide):

Proof of Phase Rotation with Displacement

\square Delay of path at x is: $\tau(x)=\tau_{0}-\frac{\mathrm{x} \sin \theta}{c}$
\square Baseband response at x :

$$
r(x, t)=A e^{-j \omega_{c} \tau_{0}} e^{2 \pi j x \sin \theta / \lambda} s(t-\tau(x))
$$

\square Also, $s(t-\tau(x)) \approx s\left(t-\tau_{0}\right)$ if $\mathrm{B}\left|\tau(x)-\tau_{0}\right| \ll 1$

RX position
\square But, by assumption of small displacement:

$$
\mathrm{B}\left|\tau(x)-\tau_{0}\right| \leq \frac{B|x|}{c}=\frac{B|x|}{\lambda f_{c}} \ll 1
$$

\square Hence, $r(x, t) \approx A e^{-j \omega_{c} \tau_{0}} e^{2 \pi j x \sin \theta / \lambda} s\left(t-\tau_{0}\right)=e^{2 \pi j x \sin \theta / \lambda} r(0, t)$

Response for a ULA

\square Uniform Linear array (ULA)

- M antenna positions spaced d apart
\square Transmit signal $s(t)$
- Channel single path with $\operatorname{AoA} \theta$, gain A

\square Response at position: $r_{m}(t)=A e^{-j \omega \tau_{0}} e^{2 \pi j(n-1) d \sin \theta / \lambda} s\left(t-\tau_{0}\right)$
\square SIMO frequency response is:

Response Decomposition

\square For a single path channel, the frequency response has two components:

$$
\boldsymbol{h}(\theta, \omega)=g(\omega) \boldsymbol{u}(\theta)
$$

\square Scalar channel response, $g(\omega)$

- $g(\omega)=A e^{-j \omega \tau_{0}}$
- Response at a reference position in array
\square Vector spatial signature, $\boldsymbol{u}(\theta)$
- $\boldsymbol{u}(\theta)=\left[\begin{array}{c}e^{2 \pi j 0 d \sin \theta / \lambda} \\ \vdots \\ e^{2 \pi j(M-1) d \sin \theta / \lambda}\end{array}\right]$

- Vector of phase shifts from the reference
- Also called the steering vector (reason for name will be clear later)

Array Response in 3D

\square Many arrays place elements over 2D area
\square Uniform rectangular array (URA):

- $M \times N$ grid of elements
- Spaced d_{x} and d_{y}
- Also called uniform planar array (UPA)
\square Incident angle $\Omega=(\phi, \theta)$
- (Azimuth, elevation) or (azimuth, inclination)

\square Spatial signature:

- $u_{m n}(\Omega)=$ complex response to antenna (m, n)
- $u_{m n}(\Omega)=\exp \left[\frac{2 \pi i}{\lambda}\left(m d_{x} \sin \theta \cos \phi+n d_{y} \sin \theta \sin \phi\right)\right]$

Outline

Antenna arrays and the Spatial Signature
\Rightarrow Receive Beamforming and SNR Gain
\square Array Factor
\square Multiple paths and Diversity
\square Transmit Beamforming

Multiple Receive Antennas

\square Single Input Multiple Output

- One TX antenna
- M RX antennas
\square Transmit a scalar signal $s(t)$
\square Receive a vector of signals:
- $\boldsymbol{r}(t)=\left(r_{1}(t), \ldots, r_{M}(t)\right)^{T}$

\square Basic question: How do we decode signal $x(t)$ from vector $\boldsymbol{r}(t)$?

11

Scalar Multiple Channel Problem

\square Consider transmission of a single symbol x

\square Receive a vector across M channels:

$$
\boldsymbol{r}=\boldsymbol{h} x+\boldsymbol{n}=\left(\begin{array}{c}
h_{1} \\
\vdots \\
h_{M}
\end{array}\right) x+\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{M}
\end{array}\right)
$$

- x : Scalar TX symbol
- \boldsymbol{h} : Vector of channel weights, \boldsymbol{n} : Vector of noise
\square Channel can be from many different paths:
- multiple times, frequencies or antennas
\square Applies to a single degree of freedom (time or frequency)
\square Question: How do we detect scalar x from vector \boldsymbol{r} ?

Linear Combining

\square RX model: $\boldsymbol{r}=\boldsymbol{h} x+\boldsymbol{n}$

- 1 input, M outputs
\square Linear combining: Take a linear combination

$$
\begin{aligned}
z=\boldsymbol{w}^{*} \boldsymbol{r} & =\left(\boldsymbol{w}^{*} \boldsymbol{h}\right) x+\boldsymbol{w}^{*} \boldsymbol{n} \\
& =\alpha x+v
\end{aligned}
$$

$\square \boldsymbol{w}$ is called the weighting vector

- Called the beamforming vector for multiple antennas
\square Creates effective SISO channel:
- 1 input $x, 1$ output symbol z
- Gain: $\alpha=\boldsymbol{w}^{*} \boldsymbol{h}$
- Noise: $v=\boldsymbol{w}^{*} \boldsymbol{n}$

Linear Combining Analysis

\square Linear combining: $z=\boldsymbol{w}^{*} \boldsymbol{r}=\left(\boldsymbol{w}^{*} \boldsymbol{h}\right) x+\boldsymbol{w}^{*} \boldsymbol{n}$

- Gain: $\alpha=\boldsymbol{w}^{*} \boldsymbol{h}$
- Noise: $v=\boldsymbol{w}^{*} \boldsymbol{n}$
\square Analysis: Let
- $E_{x}=E|x|^{2}=$ average symbol energy
- Assume noise $n_{m} \sim \operatorname{CN}\left(0, N_{0}\right)$ (i.i.d. complex Gaussian noise)

\square Then, after combining;
- Signal energy $=\left|\boldsymbol{w}^{*} \boldsymbol{h}\right|^{2} E_{x}$
- Noise: v is Gaussian with $E|v|^{2}=\|w\|^{2} N_{0}$
- SNR is:

$$
\gamma=\frac{\left|\boldsymbol{w}^{*} \boldsymbol{h}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}
$$

Maximum Ratio Combining

\square From previous slide: SNR is $\gamma=\frac{\left|\boldsymbol{w}^{*} \boldsymbol{h}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}$
\square Maximum ratio combining: Select BF vector to maximize SNR: $\widehat{\boldsymbol{w}}=\arg \max _{\boldsymbol{w}} \frac{\left|\boldsymbol{w}^{*} \boldsymbol{h}\right|^{2} E_{x}}{\|\boldsymbol{w}\|^{2} N_{0}}$
Theorem: The MRC weighting vector and maximum SNR is:

$$
\widehat{\boldsymbol{w}}=c \boldsymbol{h} \Rightarrow \gamma_{M R C}=\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}}
$$

- Any constant $c \neq 0$ can be used. Constant does not matter
- Align BF vector with the channel.
- Proof:

- From Cauchy-Schwartz: $\left|\boldsymbol{w}^{*} \boldsymbol{h}\right|^{2}=\|\boldsymbol{w}\|^{2}\|\boldsymbol{h}\|^{2} \cos \theta$
- Hence, $\gamma=\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}} \cos \theta$
- Maximized with $\cos \theta=1 \Rightarrow \theta=0$

MRC Gain

\square SNR with MRC: $\gamma_{M R C}=\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}}$
\square SNR on channel i is: $\gamma_{i}=\frac{\left|h_{i}\right|^{2} E_{x}}{N_{0}}$
$\square A v e r a g e$ SNR is: $\gamma_{\text {avg }}=\frac{1}{M} \sum_{i=1}^{M} \gamma_{i}=\frac{1}{M} \sum_{i=1}^{M}\left|h_{i}\right|^{2} \frac{E_{x}}{N_{0}}=\frac{1}{M}\|\boldsymbol{h}\|^{2} \frac{E_{x}}{N_{0}}$
\square MRC increases SNR by a factor of M relative to average per channel SNR
\square Beamforming gain $=\frac{\gamma_{M R C}}{\gamma_{\text {avg }}}=M$
\square Example: Suppose average SNR per antenna is 10 dB .

- With $M=16$ antennas and MRC, SNR $=10+10 \log _{10}(16)=10+4(3)=22 \mathrm{~dB}$
- Gain increases significantly!

RX Beamforming

Recall model for a single path channel:

$$
\boldsymbol{r}=g_{0} \boldsymbol{u}(\Omega) x+\boldsymbol{n}
$$

- $\boldsymbol{u}(\Omega)=$ spatial signature on that angle, $\Omega=$ angle of arrival
- $g_{0}=$ gain at reference position in array

- $x=$ transmitted symbol
$\square R X$ beamforming is just linear combining across antennas

$$
z=\boldsymbol{w}^{*} \boldsymbol{r}
$$

- \boldsymbol{w} is called the beamforming vector
- By convention, we assume $\|w\|=1$
- Geometric interpretation to be given shortly

MRC Beamforming

USingle path channel: $\boldsymbol{r}=g_{0} \boldsymbol{u}(\Omega) x+\boldsymbol{n}$
पRX beamforming: $z=\boldsymbol{w}^{*} \boldsymbol{r}$
\square SNR per antenna (before beamforming):

- $\gamma_{0}=\frac{E_{x}\left|g_{0}\right|^{2}}{N_{0}}\left|u_{m}(\Omega)\right|^{2}=\frac{E_{x}\left|g_{0}\right|^{2}}{N_{0}}$

- Assume $u_{m}(\Omega)$ includes only phase shifts
\square SNR after BF: $\gamma=\frac{\left|\boldsymbol{w}^{*} \boldsymbol{u}(\Omega)\right|^{2}}{\|\boldsymbol{w}\|^{2}} \gamma_{0}$
\square MRC beamforming: $\widehat{\boldsymbol{w}}=c \boldsymbol{u}(\Omega)$ and $\gamma=\|\boldsymbol{u}(\Omega)\|^{2} \gamma_{0}=M \gamma_{0}$

\square Conclusions:

- Optimal (MRC) beamforming vector is aligned to the spatial signature
- Optimal SNR gain = M
- Linear gain with number of antennas

Example Problem

\square Consider a system

- TX power $=23 \mathrm{dBm}$ with antenna directivity $=10 \mathrm{dBi}$
- Free space path loss $d=1000 \mathrm{~m}$
- Sample rate $=400 \mathrm{Msym} / \mathrm{s}$
- Noise energy $=-170 \mathrm{dBm} / \mathrm{Hz}$ (including NF)
- RX antenna directivity $=5 \mathrm{dBi}$ and 8 elements

SNR per ant:	0.59
SNR with MRC:	9.62

DFind SNR per antenna and SNR with MRC
\square Solution: We get a 9 dB gain!

```
% SNR per antenna
plomni = fspl(dist, lambda);
EsNOAnt = ptx - plomni - 10*log10(bw) - Enoise + dirtx + dirrx;
% SNR with MRC
EsNOMRC = EsNO + 10*log10(nantrx);
```


MATLAB Phased Array Toolbox

DPowerful toolbox

DRoutines for:

- Defining and visualizing arrays

- Computing beam patterns
- Beamforming
- MIMO
- Radar

Example: Defining a ULA

DDefine and view the array

Uniform Linear Array (ULA)
-Can display array:

- Using viewArray command
- Or, manually

```
%% Uniform Linear Array
% We first define a simple uniform linear array
fc = 28e9; % frequency
lambda = physconstt('LightSpeed')/fc;
dsep = 0.5*lambda; % element spacing
nant = 8; % Number of elements
arr = phased.ULA (nant, dsep);
% View the array
viewArray(ula,'Title','Uniform Linear Array (ULA)')
elemPos = arr.getElementPosition();
clf('reset');
plot (elemPos(1,:), elemPos(2,:), 'o');
```


Computing the Spatial Signature

\square Compute the spatial signature with the SteeringVector object

```
% Create a steering vector object
sv = phased.SteeringVector('SensorArray',arr);
% Angles to compute the SVs
npts = 361;
az = linspace(-180,180,npts)
el = zeros(1,npts);
ang = [az; el];
% Matrix of steering vectors
% This is an nant x npts matrix in this case
u = sv(fc, ang);
% Plot of the real components
plot(az, real(u)');
grid on;
xlabel('Azimuth (deg)')
ylabel('Real spatial sig');
```


Example: Defining a URA

DDefine and view the array

UUse the phased.URA class
\square Can compute steering vector similarly

```
% Construct the array
nant = [4,8];
dsep = 0.5*lambda;
arr = phased.URA(nant,dsep,'ArrayNormal','x');
% Plot the array.
% You can also use, arr.viewArray()
elemPos = arr.getElementPosition();
clf('reset')
plot(elemPos(2,:), elemPos(3,:), 'o');
grid on;
xlabel('y');
ylabel('z');
```


A 4×8 URA with normal axis aligned on x

Multiple Antennas in Commercial Systems

Dub 6 GHz systems: Mostly 1 to 4 antennas on base stations or smart phones
Form factor restricts larger number of antennas

2x2 LTE base station antenna
Cros-polarization
16 dBi element gain, 90 deg sector $750 \times 120 \times 60 \mathrm{~mm}$

K. Zhao, S. Zhang, K. Ishimiya, Z. Ying and S He, "Body-Insensitive Multimode MIMO Terminal Antenna of Double-Ring Structure," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 1925-1936, May 2015.

Massive MIMO

\square Massive MIMO:

- Many base station antennas
- 64 to 128 in many systems today
\square Significant capacity increase
- Typically $8 x$ by most estimates
$\square U s e$ SDMA
- Will discuss this later

Beamforming and MmWave

\square To compensate for high isotropic path loss, mmWave systems need large number of antennas
$\square 5 G$ handsets: Multiple arrays with 4 to 8 antennas each
$\square 5 G$ base stations: 64 to 256 elements

IBM 28 GHz array 32 element dual polarized array Sadhu et al, ISSCC 2017

Huo, Yiming, et al. "Cellular and WiFi co-design for 5G user equipment." 2018 IEEE 5G World Forum (5GWF). IEEE, 2018.

26

In-Class Problem: Simple QPSK simulation

\square Simulate QPSK transmission over a single path channel

Outline

DAntenna arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain
\Rightarrow Array Factor
\square Multiple Paths and Diversity
\square Transmit Beamforming

Array Factor

\square Suppose RX aligns antenna for $\operatorname{AoA} \Omega_{0}=\left(\theta_{0}, \phi_{0}\right)$
\square But, signal arrives from AoA $\Omega=(\theta, \phi)$
\square Define the (complex) array factor

$$
A F\left(\Omega, \Omega_{0}\right)=\widehat{\boldsymbol{w}}^{*}\left(\Omega_{0}\right) \boldsymbol{u}(\Omega)=\frac{1}{\sqrt{M}} \boldsymbol{u}^{*}\left(\Omega_{0}\right) \boldsymbol{u}(\Omega)
$$

- Assume $\|\widehat{w}\|=1$
- Indicates directional gain as a function of $\operatorname{AoA} \theta$
- Dependence on θ_{0} often omitted
\square SNR gain $=\left|A F\left(\Omega, \Omega_{0}\right)\right|^{2}$
- Max value $=M$
- Usually measured in dBi (dB relative to isotropic)
- Also called the array response

29

Uniform Linear Array

\square Spatial signature (for azimuth angle ϕ):

- $\boldsymbol{u}(\phi)=\left[1, e^{j \beta}, \ldots, e^{i(M-1) \beta}\right]^{T}, \beta=\frac{2 \pi d \cos \phi}{\lambda}$
- Note change from $\sin \theta$ to $\cos \phi$. (Array aligned on y-axis)
$\square O p t i m a l ~ B F ~ v e c t o r ~ f o r ~ A o A ~ \phi_{0}$
- $\widehat{\boldsymbol{w}}\left(\phi_{0}\right)=\frac{1}{\sqrt{M}} \boldsymbol{u}\left(\phi_{0}\right)$ (Note normalization)
\square Array factor:

$$
A F\left(\phi, \phi_{0}\right)=\widehat{\boldsymbol{w}}\left(\phi_{0}\right)^{*} \boldsymbol{u}(\phi)=\frac{e^{j(M-1) \gamma / 2}}{\sqrt{M}} \frac{\sin (M \gamma / 2)}{\sin (\gamma / 2)}
$$

$$
\text { - } \gamma=\frac{2 \pi d}{\lambda}\left(\cos \phi-\cos \phi_{0}\right)
$$

\square Antenna gain: $|A F|^{2}=\frac{\sin ^{2}(M \gamma / 2)}{M \sin ^{2}(\gamma / 2)}$

Antenna Gain for ULA

Broadside: $\theta_{0}=0$

Endfire: $\theta_{0}=90$

$$
d=\lambda / 2, \quad M=8
$$

\square Maximum gain of

\square Note:

- Endfire vs. broadside
- Beamwidth $\propto 1 / M$

Plotting the Array Factor

for iplot $=1: n p l o t$

\% Get the SV for the beam direction
\% Note: You must call release method of the $s v$
$\%$ before each call since it expects the same size $\%$ of the input
ango $=$ [azPlot(iplot); 0];
sv.release();
$u 0=s v(f c$, ang 0$) ;$
\% Normalize the direction
$\mathrm{u} 0=\mathrm{u} 0 /$ norm(u0);
\% Get the SV for the AoAs. Take el=0
npts $=1000$;
az $=$ linspace ($-180,180$, npts);
el $=$ zeros (1, npts);
ang $=$ [az; el];
sv.release();
$u=s v(f c, a n g) ;$
\% Compute the AF and plot it
$\mathrm{AF}=10^{*} \log 10\left(\mathrm{abs}(\operatorname{sum}(\operatorname{conj}(\mathrm{u} 0) . \star \mathrm{u}, ~ 1)) \cdot{ }^{\wedge} 2\right.$)
\% Plot it
subplot(1,nplot,iplot),
plot(ang(1,:), AF, 'LineWidth', 2);
end

Polar Plot

\square Useful to visualize in polar plot
-Note key features:

- Direction of maximum gain
- Sidelobes
- Pattern repeated on reverse side
\% Polar plot
AFmin $=-30$;
subplot(1, nplot,iplot);
polarplot(deg2rad(az), max(AF, AFmin), 'LineWidth', 2); rlim([AFmin, 10]);
grid on;

Key Statistics

Full null beamwidth (zero to zero)

Half power beamwidth (-3dB to -3dB)

First sidelobe level

	Broadside $\left(\theta_{0}=\pi / 2\right)$	End-fire $\left(\theta_{0}=0\right)$
FNBW	$2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{\lambda}{N \Delta}\right)\right]$	$2 \cos ^{-1}\left(1-\frac{\lambda}{N \Delta}\right)$
	$\left(30^{\circ}\right)$	$\left(83^{\circ}\right)$
HPBW	$2\left[\frac{\pi}{2}-\cos ^{-1}\left(\frac{1.39 \lambda}{\pi N \Delta}\right)\right]$	$2 \cos ^{-1}\left(1-\frac{1.39 \lambda}{\pi N \Delta}\right)$ $\left(13^{\circ}\right)$
FSLL	$\frac{1}{N\left\|\sin \left(\frac{3 \pi}{2 N}\right)\right\|}$	$\frac{1}{N \left\lvert\, \sin \left(\frac{8 \pi}{2 N}\right)\right.}$
	$(-13 \mathrm{~dB})$	$(-13 \mathrm{~dB})$
D_{0}	$2 N \Delta / \lambda$	$4 N \Delta / \lambda$
	$(9 \mathrm{~dB})$	$(12 \mathrm{~dB})$

\square From Jacobs University slides
\square Values in () for: $d=\lambda / 2, \quad M=8$

Grating Lobes

\square When $d>\frac{\lambda}{2}$
\square Obtain multiple peaks
\square Does not direct gain in one direction

```
dsep = 2*lambda; % element spacing
nant = 8; % Number of elements
arr = phased.ULA (nant,dsep);
|
% Get the SV for the beam direction.
ang0 = [0; 0];
sv.release();
u0 = sv(fc, ang0);
arr.patternAzimuth(fc,'Weights', u0);
```


Directivity (dBi), Broadside at 0.00

Plotting the Patterns

\square MATLAB has excellent routines for 3D patterns
\square Note that this plots directivity not array factor
sv $=$ phased.SteeringVector('SensorArray',arr) ang0 $=$ [0; 0];
sv.release()
$u_{0}=s v(f c$, ango);
$u 0=u 0 /$ norm(u0);

\% We can plot the directivity in a 3D plot arr.pattern(fc,'Weights', u0);

elPlot $=$ [0 45];
arr.patternAzimuth(fc, elPlot, 'Weights', u0);

Element Gain

Above analysis assumes each element is omni-directional
\square Each antenna element may also have gain.
\square Assume all elements of an array are identical and have same orientation
\square Pattern multiplication theorem: The frequency response of a single path channel is:

Freq response Element gain Spatial signature @reference
\square Resulting array factor (in linear scale): $\operatorname{AF}\left(\Omega, \Omega_{0}\right)=A F_{\text {iso }}\left(\Omega, \Omega_{0}\right) A_{E}(\Omega)$

- $A F_{\text {iso }}\left(\Omega, \Omega_{0}\right)=\frac{1}{\sqrt{M}} \boldsymbol{u}^{*}\left(\Omega_{0}\right) \boldsymbol{u}(\Omega)=$ array factor with isotropic elements

Example: URA with Patch Elements

Example 4x8 URA

\square Add patch element

- Element normal in +x direction
- Peak element gain $\approx 8 \mathrm{dBi}$
- Adds to the total array gain

Isotropic elements

4×8 URA
Peak directivity $\approx 15 \mathrm{~dB}$
Gain in both positive and negative x direction

3D Directivity Pattern

Example: URA with Patch Elements in 2D

-Pattern multiplication in 2D

\square Element gain increases directivity
\square Note: MATLAB plots directivity

- Does not plot array gain
- Directivity is array gain normalized to one

In-Class Problem: Simulating BF Mismatch

-Continue simulation but with BF mismatch

Outline

DAntenna arrays and the Spatial Signature
\square Receive Beamforming and SNR Gain
\square Array Factor
λ Multiple paths and Diversity
\square Transmit Beamforming

Multiple Paths

\square Easy to extend channel response to multiple paths
\square Each path adds a term with a spatial signature
\square Time-domain model

Time-Varying Frequency Response

\square Apply input $x(t)=e^{j \omega t}$
$\square \mathrm{RX}$ vector is $\boldsymbol{r}(t)=\boldsymbol{h}(t, \omega) x(t)$
\square Time-varying frequency response
$\square \boldsymbol{h}(t, \omega)=\sum_{\ell=1}^{L} g_{\ell} e^{j \omega_{\ell} t-j \omega \tau_{\ell}} \boldsymbol{u}\left(\Omega_{\ell}\right)$
\square Vector channel response

Time-Varying Frequency Response

\square Multipath channel: $\boldsymbol{r}(t)=\sum_{\ell=1}^{L} g_{\ell} e^{j \omega_{\ell} t} \boldsymbol{u}\left(\Omega_{\ell}\right) x\left(t-\tau_{\ell}\right)$
\square Consider exponential scalar input: $x(t)=e^{j \omega t}$
\square Vector output is: $\boldsymbol{r}(t)=\boldsymbol{h}(t, \omega) x(t)$
DTime-varying frequency response

$$
\boldsymbol{h}(t, \omega)=\sum_{\ell=1}^{L} g_{\ell} e^{j\left(\omega_{\ell} t-\omega \tau_{\ell}\right)} \boldsymbol{u}\left(\Omega_{\ell}\right)
$$

\square May also write: $\boldsymbol{h}(t, f)=\boldsymbol{h}(t, 2 \pi f)$

OFDM Time-Frequency Grid

\square Recall OFDM from earlier lecture
\square Divide channel into sub-carriers and OFDM symbols

- Resource element: One time-frequency point
\square Data is transmitted is an array: $X[n, k]$
- $k=$ OFDM symbol index, $n=$ subcarrier index
- One complex value per RE.
\square Receive a vector:

$$
\boldsymbol{Y}[n, k]=\left[Y_{1}[n, k], \ldots, Y_{M}[n, k]\right]^{T}
$$

- One complex symbol per antenna per RE

OFDM Channel with Multiple RX Antennas

DOFDM channel acts as multiplication:
Under normal operation (delay spread is contained in CP):

\square OFDM channel gains can be computed from the multi-path components

$$
\boldsymbol{H}[k, n]=\sum_{\ell=1}^{L} \sqrt{E_{\ell}} e^{-2 \pi j\left(T k f_{\ell}+S n \tau_{\ell}+\phi_{\ell}\right)} \boldsymbol{u}\left(\Omega_{\ell}\right)
$$

- $T=$ OFDM symbol time, $S=$ sub-carrier spacing
- For each path: $f_{\ell}=$ Doppler shift, $\tau_{\ell}=$ Delay, $\phi_{\ell}=$ phase of path, $E_{\ell}=$ path received energy

Time Scales

\square Consider vector channel response

$$
\boldsymbol{h}(t, \omega)=\sum_{\ell=1}^{L} g_{\ell} e^{j \omega_{\ell} t-j \omega \tau_{\ell}} \boldsymbol{u}\left(\Omega_{\ell}\right)
$$

\square Large scale parameters: Change slowly

- Gain g_{ℓ} and angles Ω_{ℓ}
- Depend on geometry and large obstacles.
\square Small scale parameters: Change rapidly
- $\omega \tau_{\ell}$: Changes over frequency on order of inverse delay spread
- $\omega_{\ell} t$: Changes over time on order of Doppler spread

RX Correlation

DHow correlated are two different antennas?

- Related to diversity gain
\square Covariance matrix

$$
\boldsymbol{Q}=\operatorname{cov}[\boldsymbol{h}(t, \omega)]=E(\boldsymbol{h}(t, \omega)-\boldsymbol{\mu})(\boldsymbol{h}(t, \omega)-\boldsymbol{\mu})^{*}
$$

\square Typically fix AoA and path gains, average over ω and t
\square Averaging over time and frequency: $E \boldsymbol{h}(t, \omega)=0$ and

$$
\boldsymbol{Q}=\sum_{\ell=1}^{L}\left|g_{\ell}\right|^{2} \boldsymbol{u}\left(\Omega_{\ell}\right) \boldsymbol{u}\left(\Omega_{\ell}\right)^{*}
$$

- Proof on board

Correlation with Random AoAs

\square Suppose:

- ULA with M elements
- L large. Total power gain G
- AoAs spread θ had pdf $p(\theta)$

DThen:

$$
Q_{k m}=G \int_{0}^{2 \pi} p(\theta) e^{i k d(k-m) \cos \theta} d \theta
$$

Correlation with Uniform AoAs

DIf θ uniform $[0,2 \pi]$
\square Then:

$$
Q_{j m}=\frac{G}{2 \pi} \int_{0}^{2 \pi} e^{i k d(j-m) \cos \theta} d \theta=J_{0}\left(\frac{2 \pi d_{j m}}{\lambda}\right)
$$

- $d_{j m}=d(j-m)$ distance between antennas
- $J_{0}(x)=$ Bessel function

Become uncorrelated when $d_{j m} \gg \lambda$
ONeed more spacing for smaller range of angles

Diversity Gain

\square Peak gain does not depend on antenna size
-High diversity gain requires wide separation
DExample:

- $f_{c}=3 \mathrm{GHz}$
- $\lambda=10 \mathrm{~cm}$
- Antenna separation $10 \lambda=1 \mathrm{~m}$
- Possible in a cellular tower.
- Not possible in a handset

Outline

DAntenna arrays and the Spatial Signature
-Receive Beamforming and SNR Gain
\square Array Factor
\square Multiple paths and Diversity
JTransmit Beamforming

Multiple TX antennas

DMISO channel

- Multiple input single output
- M TX antennas, 1 RX antennas
- Transmit vector: $\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{M}(t)\right)^{T}$
- Scalar RX: $r(t)$

DMost of the theory is identical to the SIMO channel

Single Path Channel

\square First consider single path channel

\square Similar to SIMO case, RX signal is:

$$
r(t)=g_{0} \boldsymbol{u}^{*}(\Omega) \boldsymbol{x}(t-\tau)
$$

- g_{0} path gain
- $\Omega=$ angle of departure
- $\tau=$ path delay
- $\boldsymbol{u}^{*}(\Omega)$ spatial signature
$\square T X$ and $R X$ spatial signatures are identical

TX array

RX with single antenna

- Except you apply the conjugate transpose

TX Beamforming

$\square \mathrm{RX}$ signal is: $r(t)=g_{0} \boldsymbol{u}^{*}(\Omega) \boldsymbol{x}(t-\tau)+n(t)$
\square TX beamforming

- Input scalar information signal $s(t)$
- Create vector signal to antennas: $\boldsymbol{x}(t)=\boldsymbol{w} s(t)$
- \boldsymbol{w} is called the TX beamforming vector

口Also called pre-coding

MRC TX Beamforming

$\square \mathrm{RX}$ signal is: $r(t)=g_{0} \boldsymbol{u}^{*}(\Omega) \boldsymbol{x}(t-\tau)+n(t)$
\square Analysis is identical to SIMO case
\square MRC TX BF vector: $\widehat{\boldsymbol{w}}=\frac{1}{\sqrt{N}} \boldsymbol{u}(\Omega)$

- Align with AoD
\square SNR gain $=N$
\square Define and compute Array Factor similarly

\square Also define multi-path channel

Beamforming and Channel Estimation

\square Key issue for beamforming: Channel estimation
$\square T X$ and RX beamforming require that channel is known
\square We will discuss many of these concepts later

- Reference signals
- Channel feedback
- Channel tracking
- Beam management
- Spatial equalization

57

Friis' Law and MmWave

\square Recall Friis' Law: $\frac{P_{r}}{P_{t}}=D_{1} D_{2}\left(\frac{\lambda}{4 \pi R}\right)^{2}$
\square Isotropic path loss decreases with λ^{2}
\square Millimeter Wave systems: Increases f_{c}^{2}

- Decreases $\lambda^{2} \Rightarrow$ Increase path loss
- Compensate isotropic path loss with directivity, D_{i}
\square Fix aperture A_{1} on TX side, A_{2} on receiver side
- Can fit $N_{i}=\frac{c A_{i}}{\lambda^{2}}$ antennas on each side

- Leads to directivity: $\mathrm{D}_{\mathrm{i}} \propto N_{i} \propto \frac{A_{i}}{\lambda^{2}}$
\square Can compensate isotropic path loss with directivity

Friis' Law and MmWave

Condition	Directivity scaling	Path loss scaling
No beamforming	D_{i} constant	$P L \propto f_{c}^{2}$
Beamforming on one side (TX or RX)	$D_{1} \propto f_{c}^{2}, D_{2}$ constant	$P L$ constant
Beamforming on both sides (TX and RX)	$D_{1}, D_{2} \propto f_{c}^{2}$	$P L \propto f_{c}^{-2}$

\square Friis' Law: $\frac{P_{r}}{P_{t}}=D_{1} D_{2}\left(\frac{\lambda}{4 \pi R}\right)^{2}$
\square Conclusions: With a fixed aperture and beamforming

- Isotropic path loss can be overcome
\square But systems need very directive beams
- Raises many other issues. E.g. Channel tracking, processing, ...

