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Learning Objectives
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Describe symbol mapping for QAM constellations

Implement symbol detection for faded symbols
◦ Compute average BER and SER on AWGN and flat channels and compare

Identify if a system can be model as slow or fast fading

For slow fading, compute outage probability and capacity under a fading model

For fast fading, compute the ergodic capacity 

Create a TX and RX chain for flat and fading channels with given components
◦ Symbol equalization, soft symbol detection, interleaving, channel decoder

Use MATLAB tools for common channel encoders and decoders
◦ Convolutional, turbo codes and LDPC codes



Outline
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Uncoded Modulation over Fading Channels

Outage Probability and Ergodic Capacity 

Review:  Coding over an AWGN Channel

Coding over Fading Channels



Uncoded Modulation
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TX filter
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This section:  Uncoded modulation over fading channels
◦ That is, communication with no channel encoding and decoding

We will show uncoded modulation works very poorly

Virtually all practical wireless systems use coding of some form

QAM 
symbols

RX QAM 
symbols

RX bits



Mathematical Model
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mapping

TX bits

Fading channel
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demodulation

Simple memoryless model:  
𝑟𝑟 𝑛𝑛 = ℎ 𝑛𝑛 𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛

◦ 𝑠𝑠 𝑛𝑛 and 𝑟𝑟 𝑛𝑛 : TX and RX QAM symbols
◦ ℎ[𝑛𝑛]:  Fading channel gain,  𝑤𝑤[𝑛𝑛] Noise 

Assumptions:  
◦ Perfect synchronization
◦ No ISI in the channel (or the equalizer has removed the effect of the ISI, more on this later)
◦ We can look at one symbol at a time

RX QAM 
symbols
𝑟𝑟[𝑛𝑛]

RX bits

TX QAM 
symbols
𝑠𝑠[𝑛𝑛]



Review:  Bit to Symbol Mapping
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𝑏𝑏 𝑘𝑘 ∈ {0,1} = sequence of bits.

s 𝑛𝑛 ∈ {𝑠𝑠1, … , 𝑠𝑠𝑀𝑀} = sequence of complex symbols
◦ Each symbol has one of 𝑀𝑀 possible values

Modulation rate:  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = log2 𝑀𝑀bits per symbol
◦ Each 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 bits gets mapped to one symbol

Symbol period:  One symbol every 𝑇𝑇 seconds.

Bit rate of 𝑅𝑅 = 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚/𝑇𝑇 bits per second

T

𝑠𝑠[0]

𝑏𝑏 0 , 𝑏𝑏 1 , 𝑏𝑏 2 , 𝑏𝑏 3 , 𝑏𝑏 4 , 𝑏𝑏 5 , …

𝑠𝑠[1] 𝑠𝑠[2]

Ex. with M=4 symbols 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚=2 bits per symbol



Review:  QAM Modulation
𝑀𝑀 −QAM:  Most common bit to symbol mapping in wireless system
◦ 𝑅𝑅/2 bits mapped to 𝐼𝐼 and 𝑅𝑅 /2 bits mapped to Q
◦ Each dimension is mapped uniformly
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𝑅𝑅 = 2 bits/sym
𝑅𝑅 = 4 bits/sym 𝑅𝑅 = 6 bits/sym

QPSK



ML Estimation for Symbol Demodulation

8

Consider single symbol:  𝑟𝑟 = ℎ𝑠𝑠 + 𝑤𝑤, 𝑤𝑤 ~ 𝐶𝐶𝐶𝐶 0,𝐶𝐶0 , 𝑠𝑠 ∈ {𝑠𝑠1, … , 𝑠𝑠𝑀𝑀}
◦ Drop the sample index 𝑛𝑛
◦ 𝑠𝑠 is a QAM symbol

Maximum likelihood estimation:   
�̂�𝑠 = arg max

𝑠𝑠=𝑠𝑠1,…𝑠𝑠𝑀𝑀
𝑝𝑝(𝑟𝑟|𝑠𝑠 = 𝑠𝑠𝑚𝑚)

Given 𝑠𝑠 and ℎ:  𝑟𝑟~𝐶𝐶𝐶𝐶(ℎ𝑠𝑠,𝐶𝐶0)

Hence, 

𝑝𝑝 𝑟𝑟 𝑠𝑠 =
1

𝜋𝜋 𝐶𝐶0
exp −

𝑟𝑟 − ℎ𝑠𝑠 2

𝐶𝐶0



Equalization and Nearest Symbol Detection
Likelihood: 𝑝𝑝 𝑟𝑟 𝑠𝑠 = 1

𝜋𝜋 𝑁𝑁0
exp − 𝑟𝑟−ℎ𝑠𝑠 2

𝑁𝑁0

MLE is:  �̂�𝑠 = arg max
𝑠𝑠

𝑝𝑝(𝑟𝑟|𝑠𝑠) = arg min
𝑠𝑠

𝑟𝑟 − ℎ𝑠𝑠 2 = arg min
𝑠𝑠

𝑧𝑧 − 𝑠𝑠 2

Here, 𝑧𝑧 = 𝑟𝑟
ℎ

= equalized symbol.

Procedure:  
◦ Step 1:  Equalize the symbol: 𝑧𝑧 = 𝑟𝑟

ℎ
◦ Step 2:  Find 𝑠𝑠 = 𝑠𝑠1, … , 𝑠𝑠𝑀𝑀 closest to 𝑧𝑧 in the complex plane
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Decision Regions
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ML estimate is closest point in constellation to 𝑧𝑧:   �̂�𝑠 = arg min
𝑖𝑖

𝑧𝑧 − 𝑠𝑠𝑖𝑖

Decision region for a point 𝑠𝑠𝑚𝑚:
◦ set of points 𝑟𝑟 where 𝑠𝑠𝑚𝑚 is the closest point:  𝐷𝐷𝑚𝑚 = 𝒓𝒓|�̂�𝑠 = 𝑠𝑠𝑚𝑚

𝑧𝑧

Decision 
region for s1

s1 (closest 
point)

s2

s3 s4

Example:  Decision 
region in QPSK



Error Probabilities on an AWGN Channel
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Error probabilities:
◦ Symbol error rate,  SER:  Prob symbol is misdetected
◦ Bit error rate, BER:  Probability of a bit is in error
◦ Assume TX symbols are uniformly distributed

First consider AWGN model:  𝑧𝑧 = 𝑠𝑠 + 𝑣𝑣
◦ No fading

SER for QPSK can be shown to be:
𝑆𝑆𝑆𝑆𝑅𝑅 = 1 − 1 − 𝑄𝑄 𝛾𝛾𝑠𝑠

2 ≈ 2𝑄𝑄 𝛾𝛾𝑠𝑠
◦ SNR = 𝛾𝛾𝑠𝑠 = 𝐸𝐸𝑠𝑠

𝑁𝑁0
= 𝐸𝐸 𝑠𝑠 2

𝐸𝐸 𝑣𝑣 2

z w
No error
z in correct decision region

Error
z not in 
correct decision region

sm

sm

w

z



SER for AWGN Modulation
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Error formula can be derived for most QAM mappings
◦ See, e.g., Proakis

For an AWGN channel:
◦ SER typically decays exponentially with SNR
◦ Ex:  for QPSK



Ex:  BER Simulation for 16-QAM
See demo

Easy to do in MATLAB
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SNR on a Fading Channel
Now return to a fading channel: 

𝑟𝑟 = ℎ𝑠𝑠 + 𝑤𝑤, 𝑤𝑤~𝐶𝐶𝐶𝐶 0,𝐶𝐶0 ,

Equalization:    𝑧𝑧 = 𝑟𝑟
ℎ

= 𝑠𝑠 + 𝑣𝑣,
◦ 𝑣𝑣 = 𝑤𝑤

ℎ
Effective noise after equalization

SNR after equalization:
◦ Noise energy after equalization:  

𝑆𝑆 𝑣𝑣 2 =
1
ℎ 2 𝑆𝑆 𝑤𝑤 2 =

𝐶𝐶0
ℎ 2

◦ SNR is  𝛾𝛾𝑠𝑠 = 𝐸𝐸 𝑠𝑠 2

𝐸𝐸 𝑣𝑣 2 = ℎ 2 𝐸𝐸𝑠𝑠
𝑁𝑁0

◦ SNR varies with the fading ℎ

Average SNR is:  �̅�𝛾𝑠𝑠 = 𝑆𝑆 𝛾𝛾𝑠𝑠 = 𝑆𝑆 ℎ 2 𝐸𝐸𝑠𝑠
𝑁𝑁0
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High
SNR

Low
SNR

SNR:  𝛾𝛾𝑠𝑠 = ℎ 2𝐸𝐸𝑠𝑠
𝑁𝑁0



SER on a Fading Channel
Fading channel:  𝑟𝑟 = ℎ𝑠𝑠 + 𝑤𝑤

With fading, SNR is random ,.  SNR is 𝛾𝛾𝑠𝑠 = ℎ 2 𝐸𝐸𝑠𝑠
𝑁𝑁0

Define the average SER:  

𝑆𝑆𝑆𝑆𝑅𝑅 �̅�𝛾𝑠𝑠 = 𝑆𝑆 𝑆𝑆𝑆𝑆𝑅𝑅 𝛾𝛾𝑠𝑠 = �
0

∞
𝑝𝑝 𝛾𝛾𝑠𝑠 𝑆𝑆𝑆𝑆𝑅𝑅 𝛾𝛾𝑠𝑠 𝑑𝑑𝛾𝛾𝑠𝑠

◦ A function of the average SER
◦ Represents the average over independent channel realizations

If ℎ is Rayleigh distributed, 𝛾𝛾𝑠𝑠 is exponential with �̅�𝛾𝑠𝑠 = 𝑆𝑆 𝛾𝛾𝑠𝑠 = 𝑆𝑆 ℎ 2 𝐸𝐸𝑠𝑠
𝑁𝑁0

𝑆𝑆𝑆𝑆𝑅𝑅 �̅�𝛾𝑠𝑠 =
1
�̅�𝛾𝑠𝑠
�
0

∞
𝑒𝑒−𝛾𝛾𝑠𝑠/�𝛾𝛾𝑠𝑠 𝑆𝑆𝑆𝑆𝑅𝑅 𝛾𝛾𝑠𝑠 𝑑𝑑𝛾𝛾𝑠𝑠
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Example:  SER on QPSK with Rayleigh Fading
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Rayleigh fading: 𝛾𝛾𝑠𝑠 is exponential 𝑆𝑆 𝛾𝛾𝑠𝑠 = �̅�𝛾𝑠𝑠
QPSK:  𝑆𝑆𝑆𝑆𝑅𝑅 𝛾𝛾𝑠𝑠 ≈ 2𝑄𝑄 2𝛾𝛾𝑠𝑠 for large 𝛾𝛾𝑠𝑠

Lemma: Suppose that 𝛾𝛾 is exponential 𝑆𝑆 𝛾𝛾 = �̅�𝛾, 𝑆𝑆 𝑄𝑄 𝛼𝛼𝛾𝛾 = 1
2

1 − 𝛼𝛼�𝛾𝛾
2+𝛼𝛼�𝛾𝛾

≈ 1
2𝛼𝛼�𝛾𝛾

◦ Detailed proof below.  Write 

Average SER:  From Lemma 
𝑆𝑆𝑆𝑆𝑅𝑅 = 𝑆𝑆 𝑆𝑆𝑆𝑆𝑅𝑅(𝛾𝛾𝑠𝑠) ≈

2
2 2 �̅�𝛾

=
1

2�̅�𝛾
Average SER decays as ⁄∝ 1 �̅�𝛾𝑠𝑠
In AWGN channel, SER decays as 𝑄𝑄 2𝛾𝛾𝑠𝑠 ∝ 𝑒𝑒−𝛾𝛾𝑠𝑠

Much slower decay



Comparison of Fading vs. AWGN
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Error rate with fading is dramatically higher.

Ex. for QPSK:
◦ No fading, SER decays exponentially
◦ With fading, SER decays with inverse SNR

Similar relations for most other constellations

Need much higher SNR

1 ( )
2

SER s
s

γ
γ

≈ ( )
seSER s
s

γ
γ

πγ

−
≈

SER with QPSK

No fading Rayleigh fading



16-QAM Example
See demo 

Large gap between AWGN and Rayleigh
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Lemma for Average of Q function
Lemma: Suppose that 𝛾𝛾 is exponential 𝑆𝑆 𝛾𝛾 = �̅�𝛾.

𝑆𝑆 𝑄𝑄 𝛼𝛼𝛾𝛾 =
1
2

1 −
𝛼𝛼�̅�𝛾

2 + 𝛼𝛼�̅�𝛾
≈

1
2𝛼𝛼�̅�𝛾

Proof:
◦ 𝑆𝑆 𝑄𝑄 𝛼𝛼𝛾𝛾 = 1

�𝛾𝛾 ∫0
∞𝑄𝑄 𝛼𝛼𝛾𝛾 𝑒𝑒− ⁄𝛾𝛾 �𝛾𝛾𝑑𝑑𝛾𝛾

◦ 𝑄𝑄 𝛼𝛼𝛾𝛾 = 1
2𝜋𝜋 ∫ 𝛼𝛼𝛾𝛾

∞ 𝑒𝑒− ⁄𝑢𝑢2 2𝑑𝑑𝑑𝑑

◦ Change order of integral

19



In-Class Exercise

20



Outline
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Uncoded Modulation over Fading Channels

Outage Probability and Ergodic Capacity 

Review:  Coding over an AWGN Channel

Coding over Fading Channels



Coding Over Fading Channels
Lesson from previous section:
◦ With fading, uncoded modulation cannot provided sufficient reliability
◦ Error rate decays slowly with SNR

Channel coding:
◦ Send data in blocks
◦ Block contains redundancy
◦ If some parts fade, can still recover block

All commercial wireless systems use coding!

22



Slow Fading vs. Fast Fading
To analyze coding over a fading channel, 

consider two extreme cases

Slow fading
◦ Block length 𝑇𝑇 ≪ 𝑇𝑇𝑐𝑐𝑚𝑚ℎ, 𝑇𝑇𝑐𝑐𝑚𝑚ℎ channel coherence time
◦ All symbols in block are faded equally
◦ Entire packet sees same SNR
◦ Performance measured by outage probability and outage capacity

Fast fading
◦ Block length 𝑇𝑇 ≫ 𝑇𝑇𝑐𝑐𝑚𝑚ℎ
◦ Symbols in packet see many realizations of channel
◦ Performance measured by ergodic capacity

23

𝑇𝑇

𝑇𝑇



Slow Fading and Outage Probability
Coding block sees an SNR 𝛾𝛾

SNR 𝛾𝛾 varies but is constant over each block
◦ Transmission time ≪ Coherence time

Code has some target SNR 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡
◦ Target could be based on some block error probability

Assume 𝛾𝛾 has some distribution

Outage probability:  P𝑚𝑚𝑢𝑢𝑡𝑡 = 𝑃𝑃 𝛾𝛾 ≤ 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡
◦ The fraction of time target is not met

Can be computed from the distribution of 𝛾𝛾

24

SNR

Time

Coding block



Outage Probability for Rayleigh Fading
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Suppose a channel is Rayleigh fading

SNR 𝛾𝛾 is exponentially distributed with some mean �̅�𝛾

Outage probability:  𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡 = 𝑃𝑃 𝛾𝛾 < 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡 = 1 − 𝑒𝑒−
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡
�𝛾𝛾

Average SNR for a given outage probability:   �̅�𝛾 = − 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡
ln 1−𝑃𝑃𝑜𝑜𝑜𝑜𝑡𝑡

Fade margin:  Additional SNR needed above target for a given outage probability:
◦ In linear scale: �𝛾𝛾

𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡
= − 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡

ln 1−𝑃𝑃𝑜𝑜𝑜𝑜𝑡𝑡
≈ 1

𝑃𝑃𝑜𝑜𝑜𝑜𝑡𝑡

◦ In dB: �̅�𝛾 ≈ 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡 − 10 log10(𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡)



Fade Margin Example
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Example:
◦ Target SNR is 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡 = 10 dB
◦ Outage probability:  𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡 = 0.01

From previous slide, necessary average SNR is:
�̅�𝛾 ≈ 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡 − 10 log10 𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡

= 10 − 10log10 0.01 = 30 dB

The average SNR needs to be 20 dB above target!

Plot:  Fade margin vs. outage

Fade margins with Rayleigh fading can be enormous! Max fade
�̅�𝛾 − 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡

20 dB fade 
margin

Fade=0 



Outage Capacity
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Suppose we can achieve some rate 𝑅𝑅 𝛾𝛾 as a function of SNR 𝛾𝛾

When SNR 𝛾𝛾 is random, so is the rate 𝑅𝑅(𝛾𝛾)

Outage capacity:  Rate, 𝑅𝑅𝑚𝑚𝑢𝑢𝑡𝑡, we can achieve with a probability 𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡
𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡 = 𝑃𝑃(𝑅𝑅 𝛾𝛾 ≤ 𝑅𝑅𝑚𝑚𝑢𝑢𝑡𝑡)

Example:  
◦ Suppose system has 20 MHz bandwidth and the rate is 60% of Shannon capacity
◦ The average SNR is 20 dB.
◦ What is the outage capacity for 1% outage assuming Rayleigh fading?

Solution:
◦ From earlier, for Rayleigh fading, the SNR achievable at the outage probability is

𝛾𝛾 ≈ �̅�𝛾 + 10 log10(𝑃𝑃𝑚𝑚𝑢𝑢𝑡𝑡) = 20 + 10 log10( 0.01) = 20 − 20 = 0
◦ In linear scale, 𝛾𝛾 = 1
◦ Outage capacity:  𝑅𝑅𝑚𝑚𝑢𝑢𝑡𝑡 = 0.6 20 log2(1 + 1) = 12 Mbps



System Implications for Outage
With slow Rayleigh fading, need to add large fade margin

Channel coding does not mitigate fading
◦ Fading causes all bits to fail
◦ Still may be useful to use channel coding (e.g., for noise across the symbols)

Possible solutions?
◦ If there is motion, perhaps we can retransmit later 
◦ Go to a lower rate (needs less SNR)
◦ Just accept that some locations are in outage

Some of these solutions are discussed in the next unit
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Fast Fading Model
Coding block much longer than coherence time

Simple information theoretic model

𝑟𝑟 𝑛𝑛 = ℎ 𝑛𝑛 𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑛𝑛 = 1, … ,𝐶𝐶

◦ Channel gains ℎ[𝑛𝑛] are i.i.d. with some distribution
◦ 𝑤𝑤 𝑛𝑛 ~𝐶𝐶𝐶𝐶(0,𝐶𝐶0) and 𝑆𝑆 𝑠𝑠 𝑛𝑛 2 = 𝑆𝑆𝑠𝑠
◦ Each symbol experiences an SNR 𝛾𝛾𝑠𝑠 𝑛𝑛 = ℎ 𝑛𝑛 2𝐸𝐸𝑠𝑠

𝑁𝑁0
◦ Blocklength 𝐶𝐶 → ∞

Assumption implicitly assumes:
◦ We have a very long blocklength 𝐶𝐶
◦ Can experience many independent fades

29
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Ergodic Capacity
Fast fading model: 𝑟𝑟 𝑛𝑛 = ℎ 𝑛𝑛 𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑤𝑤 𝑛𝑛 ~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)
◦ Channel gains ℎ[𝑛𝑛] are i.i.d. with some distribution

Ergodic capacity:  Theoretical maximum rate per symbol 
◦ Assume average transmit power limit 𝑆𝑆 𝑠𝑠 𝑛𝑛 2 = 𝑆𝑆𝑠𝑠
◦ Maximum taken over all codes and blocklength
◦ No computational limits 

Theorem:  Ergodic capacity of a fast fading channel is:

𝐶𝐶 = 𝑆𝑆 log(1 + 𝛾𝛾) , 𝛾𝛾 =
ℎ 2𝑆𝑆𝑠𝑠
𝐶𝐶0

◦ Value is in bits per symbol
◦ Expectation is over channel distribution ℎ

30

SNR

Time

Coding block



Shannon Ergodic Capacity Key Remarks
From previous slide, ergodic capacity is:

𝐶𝐶 = 𝑆𝑆 log(1 + 𝛾𝛾) , 𝛾𝛾 =
ℎ 2𝑆𝑆𝑠𝑠
𝐶𝐶0

Theoretical result:  Needs infinite computation and delay
◦ We will look at performance of real codes next

TX does not need to know channel ℎ!
◦ But RX must estimate and use this channel.
◦ We will see RX design is critical

If TX knew the channel, it could get theoretically get slightly higher rate
◦ Uses a method called water-filling
◦ Place more power on symbols with better SNR.
◦ Gain is not typically large and rarely used in practical wireless systems
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Comparing Ergodic and Flat Capacity
Fading capacity is always lower than flat fading
◦ Keeping the same average SNR the same
◦ This fact follows from Jensen’s inequality:

𝐶𝐶 = 𝑆𝑆 log(1 + 𝛾𝛾) ≤ log 1 + 𝑆𝑆 𝛾𝛾 = 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁

But gap is not that large at low to moderate SNRs
◦ See graph to the right.  Loss of only 1-2 dB in 

Conclusions:
◦ We should try to code over large number of fading realizations
◦ In this case, the capacity loss is theoretically small
◦ Much better than the case of uncoded modulation

We will look at practical codes next
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In-Class Exercise

Indoor environment

Look at large scale and small-scale fading
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Outline
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Uncoded Modulation over Fading Channels

Outage Probability and Ergodic Capacity 

Review:  Coding over an AWGN Channel

Coding over Fading Channels



Coded Communication on an AWGN Channel
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Channel 
coding

Symbol
mapping

Channel with 
noise

Soft symbol
demodulation

Channel 
decoder

Info bits
𝑏𝑏[𝑘𝑘]

Coded 
bits 𝑐𝑐[𝑘𝑘]

Info bits
�𝑏𝑏 [𝑘𝑘]LLR[𝑘𝑘]

We first review channel coding on a flat channel:

𝑟𝑟 𝑛𝑛 = 𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑤𝑤 𝑛𝑛 ~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)

TX 
symbols
𝑠𝑠[𝑛𝑛]

RX 
symbols
𝑟𝑟[𝑛𝑛]



Uncoded vs. Coded Modulation
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Uncoded Modulation:
◦ Modulate raw information bits 
◦ One symbol at a time.
◦ Any symbol is in error,   data packet is lost!

Coded modulation:
◦ Transmit in blocks (also called frames)
◦ Add extra parity bits to each block for reliability
◦ Decode entire block together

Info bits
Symbol

mapping
Complex 
symbols

Info bits 
block

Coding

Info Parity

Coded bit 
block

Block of 
symbols

Symbol
mapping



Key Parameters of Block Codes
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An (𝑛𝑛, 𝑘𝑘) block code has:
◦ 𝑘𝑘 = number of information bits  (input block size)
◦ 𝑛𝑛 = number of coded bits (output block size)
◦ 𝑛𝑛 − 𝑘𝑘 = number of additional bits, typically parity
◦ 𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑 = coding rate = 𝑘𝑘/𝑛𝑛.

Typical values in wireless:  
◦ Block size:  𝑘𝑘 = 100 to 10000
◦ Code rate:  1

3
to 5

6

k  information  bits
“message”

k info bits n-k parity

“Bit Codeword” :   n coded 
bits

Coding



Coded Communication on an AWGN Channel
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Channel 
coding

Symbol
mapping

Channel 
with noise

Soft symbol
demodulation

Channel 
decoder

Info bits
𝑏𝑏[𝑘𝑘]

Coded 
bits 𝑐𝑐[𝑘𝑘]

Info bits
�𝑏𝑏 [𝑘𝑘]LLR[𝑘𝑘]

We first review channel coding on a flat channel:

𝑟𝑟 𝑛𝑛 = 𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑤𝑤 𝑛𝑛 ~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)

TX 
symbols
𝑠𝑠[𝑛𝑛]

RX 
symbols
𝑟𝑟[𝑛𝑛]



Soft Symbol Demodulation

Set-up:  Coded bits (𝑐𝑐1, … , 𝑐𝑐𝐾𝐾) get mapped to symbol 𝑠𝑠
◦ Receive 𝑟𝑟 = 𝑠𝑠 + 𝑤𝑤, 𝑤𝑤~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)

Uncoded systems use hard decision detection:  
◦ Estimate bits (�̂�𝑐1, … , �̂�𝑐𝐾𝐾) from symbol 𝑠𝑠
◦ Makes a discrete decision.  

Coded systems generally use soft decision demodulation:  
◦ Output log likelihood ratios: 𝐿𝐿𝐿𝐿𝑅𝑅𝑘𝑘 = ln 𝑃𝑃(𝑟𝑟|𝑐𝑐𝑘𝑘=1)

𝑃𝑃(𝑟𝑟|𝑐𝑐𝑘𝑘=0)
◦ 𝐿𝐿𝐿𝐿𝑅𝑅𝑘𝑘 positive ⇒ 𝑐𝑐𝑘𝑘 = 1 more likely
◦ 𝐿𝐿𝐿𝐿𝑅𝑅𝑘𝑘 negative ⇒ 𝑐𝑐𝑘𝑘 = 0 more likely
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Soft 
demod

Symbol 
mapping

𝑐𝑐1, … , 𝑐𝑐𝐾𝐾 𝑟𝑟 = 𝑠𝑠 + 𝑤𝑤+𝑠𝑠

𝑤𝑤

𝐿𝐿𝐿𝐿𝑅𝑅1, … , 𝐿𝐿𝐿𝐿𝑅𝑅𝐾𝐾



LLR for QPSK
TX symbol:  𝑠𝑠 = ±𝐴𝐴 ± 𝑖𝑖𝐴𝐴, 𝐴𝐴 = 𝐸𝐸𝑠𝑠

2

RX symbol:  𝑟𝑟 = 𝑠𝑠 + 𝑤𝑤, 𝑤𝑤~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)

LLR for bit 𝑐𝑐0
◦ sI = 𝑅𝑅𝑒𝑒 𝑠𝑠 = � 𝐴𝐴 𝑐𝑐0 = 1

−𝐴𝐴 𝑐𝑐0 = 0

◦ 𝑟𝑟𝐼𝐼 = 𝑠𝑠𝐼𝐼 + 𝑤𝑤𝐼𝐼 , 𝑤𝑤𝐼𝐼~𝐶𝐶(0, 𝑁𝑁0
2

) [Each dim has 𝑁𝑁0
2

]

◦ Likelihood:  𝑝𝑝 𝑟𝑟𝐼𝐼 𝑠𝑠𝐼𝐼 = 1
𝜋𝜋𝑁𝑁0

exp − 1
𝑁𝑁0

𝑟𝑟𝐼𝐼 − 𝑠𝑠𝐼𝐼 2

◦ 𝐿𝐿𝐿𝐿𝑅𝑅0 = ln 𝑝𝑝 𝑟𝑟𝐼𝐼 𝑐𝑐0 = 1
𝑝𝑝 𝑟𝑟𝐼𝐼 𝑐𝑐0 = 0 = ln 𝑝𝑝 𝑟𝑟𝐼𝐼 𝑠𝑠𝐼𝐼 = 𝐴𝐴

𝑝𝑝 𝑟𝑟𝐼𝐼 𝑠𝑠𝐼𝐼 = −𝐴𝐴

◦ With some algebra: 𝐿𝐿𝐿𝐿𝑅𝑅0 = 4𝐴𝐴𝑟𝑟𝐼𝐼
𝑁𝑁0

= 4
𝑁𝑁0

𝐸𝐸𝑠𝑠
2
𝑟𝑟𝐼𝐼
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01 11

1000

Mapping of bits (𝑐𝑐0, 𝑐𝑐1)

𝑠𝑠𝑄𝑄 = 𝐼𝐼𝐼𝐼(𝑠𝑠)

𝑠𝑠𝐼𝐼 = 𝑅𝑅𝑒𝑒(𝑠𝑠)



QPSK LLR Visualized

LLR for 𝑐𝑐0 is:  𝐿𝐿𝐿𝐿𝑅𝑅0 = 4
𝑁𝑁0

𝐸𝐸𝑠𝑠
2
𝑟𝑟𝐼𝐼

LLR for 𝑐𝑐1 is:  𝐿𝐿𝐿𝐿𝑅𝑅1 = 4
𝑁𝑁0

𝐸𝐸𝑠𝑠
2
𝑟𝑟𝑄𝑄

41

Mapping of bits (𝑐𝑐0, 𝑐𝑐1)
𝐿𝐿𝐿𝐿𝑅𝑅0

𝑟𝑟𝐼𝐼

𝑐𝑐0 = 1
more likely

𝑐𝑐0 = 1
more likely



High Order Constellations
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Higher order constellations (eg. 16- or 64-QAM)

Each constellation 𝑟𝑟 is a point is a function of multiple bits.

Example:  For 16-QAM
◦ In phase dimension 𝑟𝑟𝐼𝐼 depends on bits (𝑐𝑐0, 𝑐𝑐1)

Cannot compute LLR on an individual bit directly

Two bits:
𝑐𝑐1, 𝑐𝑐2

00
𝑟𝑟 = 𝑠𝑠 + 𝑛𝑛

01 11 10

Mapping of bits (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4)



High Order Constellations
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To create LLRs for individual bits use total probability rule:

𝑝𝑝 𝑟𝑟 𝑐𝑐1 =
1
2
𝑝𝑝 𝑟𝑟 𝑐𝑐1, 𝑐𝑐2 = 0 + 𝑝𝑝 𝑟𝑟 𝑐𝑐1, 𝑐𝑐2 = 1

Resulting bitwise LLR:

𝐿𝐿𝐿𝐿𝑅𝑅 for 𝑐𝑐1 = log
𝑝𝑝 𝑟𝑟 𝑐𝑐1, 𝑐𝑐2 = 1,0 + 𝑝𝑝 𝑟𝑟 𝑐𝑐1, 𝑐𝑐2 = 1,1
𝑝𝑝 𝑟𝑟 𝑐𝑐1, 𝑐𝑐2 = 0,0 + 𝑝𝑝 𝑟𝑟 𝑐𝑐1, 𝑐𝑐2 = 0,1

Two bits:
𝑐𝑐1, 𝑐𝑐2

𝑠𝑠00 𝑠𝑠10 𝑠𝑠01𝑠𝑠11 𝑟𝑟 = 𝑠𝑠 + 𝑛𝑛



High Order Constellations
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LLRs can have irregular shapes

Not simple linear function as in BPSK / QPSK case

Often use approximations

More info:  Caire,  Taricco and  Biglieri, “Bit-
Interleaved Coded Modulation," 1998.

Two bits:
𝑐𝑐1, 𝑐𝑐2

𝑠𝑠00 𝑠𝑠10 𝑠𝑠01𝑠𝑠11 𝑟𝑟 = 𝑠𝑠 + 𝑛𝑛

LLR for c2         LLR for c1



Coded Communication on an AWGN Channel
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We first review channel coding on a flat channel:

𝑟𝑟 𝑛𝑛 = 𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑤𝑤 𝑛𝑛 ~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)

TX 
symbols
𝑠𝑠[𝑛𝑛]

RX 
symbols
𝑟𝑟[𝑛𝑛]



Maximum Likelihood Channel Decoding 

Channel coding:  Information block:  𝒃𝒃 = 𝑏𝑏1, … , 𝑏𝑏𝐾𝐾 generates a codeword 𝒄𝒄 = (𝑐𝑐1, … , 𝑐𝑐𝑁𝑁)

Receiver gets a vector 𝒓𝒓 = 𝑟𝑟1, … , 𝑟𝑟𝐿𝐿 , 𝐿𝐿 = number of complex modulation symbols

Channel decoder:  Goal is to estimate 𝒃𝒃 (or equivalently 𝒄𝒄) from 𝒓𝒓.  

Ideally will use maximum likelihood decoding:

�𝒄𝒄 = arg max
𝒄𝒄

log𝑝𝑝(𝒓𝒓|𝒄𝒄)
◦ Finds the codeword that is most likely given the receive vector
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Decoding via the LLRs, Part 1
Channel decoding: Ideally select codeword to maximize �𝒄𝒄 = arg max

𝒄𝒄
log𝑝𝑝(𝒓𝒓|𝒄𝒄)

Equivalently we can maximize: �𝒄𝒄 = arg max
𝒄𝒄

log𝑝𝑝(𝒓𝒓|𝒄𝒄) − log𝑝𝑝(𝒓𝒓|𝒄𝒄 = 𝟎𝟎)
◦ Highest likelihood relative to the all zero codeword

Assume likelihood factors as:  log𝑝𝑝(𝒓𝒓|𝒄𝒄) = ∑𝑛𝑛=1𝑁𝑁 log𝑝𝑝(𝑟𝑟𝜎𝜎 𝑛𝑛 |𝑐𝑐𝑛𝑛)
◦ 𝑟𝑟𝜎𝜎(𝑛𝑛) is the complex modulation symbol containing coded bit 𝑐𝑐𝑛𝑛

Hence, objective is: 
◦ log𝑝𝑝(𝒓𝒓|𝒄𝒄) − log𝑝𝑝 𝒓𝒓 𝒄𝒄 = 𝟎𝟎

= �
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 − log𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 = 0 = �
𝑛𝑛=1

𝑁𝑁

log
𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛

𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 = 0
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Decoding via the LLRs, Part 2
From previous slide �𝒄𝒄 = arg max

𝒄𝒄
∑𝑛𝑛=1𝑁𝑁 log

𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛
𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 = 0

But since 𝑐𝑐𝑛𝑛 = 0 or 𝑐𝑐𝑛𝑛 = 1:

log
𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛

𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 = 0
= 𝑐𝑐𝑛𝑛 log

𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 = 1
𝑝𝑝 𝑟𝑟𝜎𝜎 𝑛𝑛 𝑐𝑐𝑛𝑛 = 0

= 𝐿𝐿𝐿𝐿𝑅𝑅𝑛𝑛

Hence, the channel decoder can find the codeword by maximizing:

�𝒄𝒄 = arg max
𝒄𝒄

�
𝑛𝑛=1

𝑁𝑁

𝑐𝑐𝑛𝑛𝐿𝐿𝐿𝐿𝑅𝑅𝑛𝑛
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Decoding Complexity
Channel decoding ideally selects codeword 

�𝒄𝒄 = arg max
𝒄𝒄

�
𝑛𝑛=1

𝑁𝑁

𝑐𝑐𝑛𝑛𝐿𝐿𝐿𝐿𝑅𝑅𝑛𝑛

Brute force optimization is exponentially difficult:
◦ Suppose the information block is 𝒃𝒃 = 𝑏𝑏1, … , 𝑏𝑏𝐾𝐾
◦ Each 𝒃𝒃 generates one codeword 𝒄𝒄 = (𝑐𝑐1, … , 𝑐𝑐𝑁𝑁)
◦ Optimization must, ideally, search over 2𝐾𝐾 possible codewords 𝒄𝒄
◦ Computationally impossible

Coding design requires searching over coding mechanisms with:
◦ Computationally tractable decoding
◦ But still have good performance
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Quest for the Shannon Limit
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Shannon capacity formula and random codes, 1948.
◦ Determines the capacity, but no practical code to achieve it.

Hamming (7,4) code, 1950
Reed-Solomon codes based on polynomials over finite fields, 1960 
◦ Used in Voyager program, 1977.  CD players, 1982.

Convolutional codes.  
◦ Viterbi algorithm, 1969.  Widely used in cellular systems.  (Viterbi later invents CDMA and founds Qualcomm)
◦ Typically, within 3-4 dB of capacity

Turbo codes, Berrou, Glavieux, Thitimajshima, 1993.
◦ Able to achieve capacity within a fraction of dB.
◦ Adopted as standard in all 4G and 5G cellular systems by the late 1990s.

LDPC codes
◦ Similar iterative technique as turbo codes.  Re-discovered in 1996.
◦ Used in 5G systems



Convolutional Codes
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Encode data through parallel binary (usu. FIR) filters

Example convolutional code:
◦ Rate = ½ (two output bits (𝑐𝑐𝑐[𝑡𝑡], 𝑐𝑐2[𝑡𝑡]) for each input bit 𝑏𝑏[𝑡𝑡].
◦ Constraint length K=3 (size of shift register)
◦ Additions are modulo two

Benefits:
◦ Easy to implement, good performance
◦ Can be decoded with Viterbi algorithm

Iterative procedure similar to dynamic programming procedure
◦ See digital comm class for more details

b[t]

c1[t]

c2[t]

z-1 z-1 z-1

𝑐𝑐1 𝑡𝑡 = 𝑏𝑏 𝑡𝑡 + 𝑏𝑏 𝑡𝑡 − 1 + 𝑏𝑏 𝑡𝑡 − 2
𝑐𝑐2 𝑡𝑡 = 𝑏𝑏 𝑡𝑡 + 𝑏𝑏[𝑡𝑡 − 2]



Convolutional Code Performance
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Convolutional codes performance:
◦ > 5 dB better than uncoded BPSK at low BER

Only moderate constraint length (K=7) needed

Source:  Proakis, “Digital communications”



Simulation in MATLAB
MATLAB has excellent tools
◦ Conv encoder / decoder
◦ LLR

See demo
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Rate=1/2, QPSK, 
K=7 conv code



Turbo Codes
Turbo codes:
◦ Concatenation of two convolutional codes

Typically IIR and short (K=3) 
◦ Interleaver:  Randomly permutes the input bits

Output 
◦ Input bit, and 
◦ Parity bits from each convolutional encoder
◦ With no puncturing R=1/3

Discovered in 1993, , 
◦ Berrou, Glavieux, Thitimajshima, 1993.
◦ Able to achieve capacity within a fraction of dB.

Used in 3G and 4G standards
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Turbo Code Iterative Decoding
Turbo decoder uses an iterative message passing
◦ Decode each convolutional coder one at a time
◦ Use posterior information of one code as prior for the other

Good performance in small number (usu. ~8) iterations 
◦ Typically use short codes (K=3).
◦ Complexity similar to convolutional codes 

Close to Shannon capacity 
◦ Much better than convolution codes
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Source:  Lin, Costello, “Error Control Coding”



LDPC Codes
Code defined by a bipartite graph
◦ Connects 𝑛𝑛 coded bits and 𝑛𝑛 − 𝑘𝑘 parity bits
◦ Data 𝑘𝑘 information bits

Also use a message passing decoder
◦ Based on graphical models

Obtains excellent performance
◦ Lower complexity than turbo decoder
◦ Good for very high data rate applications

Used in 802.11ad and 5G New Radio
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LDPC Graph

Coded bits

Parity check bits



In-Class Problem

Simulate the commercial 5G NR LDPC code
◦ A rate 1/3 code
◦ Much better performance than convolutional code
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Outline
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Uncoded Modulation over Fading Channels

Outage Probability and Ergodic Capacity 

Review:  Coding over an AWGN Channel

Coding over Fading Channels



Coded Communication on a Fading Channel
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Fading channel

Info bits
𝑏𝑏[𝑘𝑘] Info bits

�𝑏𝑏 [𝑘𝑘]

Now consider fading channel:  𝑟𝑟 𝑛𝑛 = ℎ[𝑛𝑛]𝑠𝑠 𝑛𝑛 + 𝑤𝑤 𝑛𝑛 , 𝑤𝑤 𝑛𝑛 ~𝐶𝐶𝐶𝐶(0,𝐶𝐶0)

To handle fading we need to introduce a few new blocks
◦ Interleaving and de-interleaving
◦ Equalization

Inter-
leaver

Symbol 
mapping

Channel 
encoder

Equal-
ization

De-inter-
leaver

Channel 
decoder

New blocks
New block



MMSE Symbol Equalization
Received noisy symbol:

𝑟𝑟 = ℎ𝑠𝑠 + 𝑤𝑤, 𝑤𝑤~𝐶𝐶𝐶𝐶 0,𝐶𝐶0
MMSE estimation:
◦ Use linear estimate �̂�𝑠 = 𝛼𝛼𝑟𝑟
◦ Select 𝛼𝛼 to minimize 𝑆𝑆 𝑠𝑠 − �̂�𝑠 2 = 𝑆𝑆 𝑠𝑠 − 𝛼𝛼𝑟𝑟 2

Resulting estimate (shown with simple algebra):
◦ Estimate: �̂�𝑠 = 𝛼𝛼𝑟𝑟, 𝛼𝛼 = 𝐸𝐸𝑠𝑠ℎ∗

ℎ 2𝐸𝐸𝑠𝑠+𝑁𝑁0

◦ Noise variance: 𝑆𝑆 𝑠𝑠 − �̂�𝑠 2 = 𝐸𝐸𝑠𝑠𝑁𝑁0
ℎ 2𝐸𝐸𝑠𝑠+𝑁𝑁0

Provides lower noise estimate than channel inversion
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Symbol Equalization via Inversion
Received noisy symbol:

𝑟𝑟 = ℎ𝑠𝑠 + 𝑤𝑤, 𝑤𝑤~𝐶𝐶𝐶𝐶 0,𝐶𝐶0
Symbol equalization:  
◦ Estimate 𝑠𝑠 from 𝑟𝑟
◦ Also obtain a noise estimate (needed for LLR)

Channel inversion:
◦ Symbol estimate �̂�𝑠 = 𝑟𝑟

ℎ
= 𝑠𝑠 + 𝑣𝑣, 𝑣𝑣 = 𝑤𝑤

ℎ

◦ Noise estimate:  𝑆𝑆 𝑣𝑣 2 = 1
ℎ 2 𝑆𝑆 𝑤𝑤 2 = 𝑁𝑁0

ℎ 2
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Interleaving and De-Interleaving
Problem:  Fading is correlated in time
◦ Will result in many consecutive faded bits
◦ Many codes perform poorly if errors are together

Interleaver
◦ Shuffles the bits before symbol mapping
◦ De-interleaving is performed on LLRs
◦ Randomizes locations of errors
◦ Removes time correlations

Many interleavers used in practice
◦ Random interleaver (with some seed at TX and RX)
◦ Row-column interleavers…
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Simulation
Simulation:
◦ Convolutional code, rate 1

2
with QPSK

◦ Constraint length 𝐾𝐾 = 7
◦ Plotted is block error rate (BLER) vs. 𝐸𝐸𝑏𝑏

𝑁𝑁0

Gap between AWGN and fading:
◦ Approximately 4 dB at BLER = 10−2

◦ Much smaller gap than uncoded modulation
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Simulating in MATLAB
Transmitter and Channel Fading
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Summary
Fading:  Causes variations in SNR

Uncoded modulation:
◦ Dramatically increases error rate
◦ Must add significant fade margin

Coding with slow fading
◦ All symbols are faded together
◦ Fade margin still necessary

Coding with fast fading
◦ Can greatly mitigate fading
◦ Recover faded bits with redundancy
◦ But needs to encoded over many independent fades
◦ Transmit over many coherence or bandwidth 
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