Unit 3. Multi-Path Fading

ECE-GY 6023. WIRELESS COMMUNICATIONS
PROF. SUNDEEP RANGAN




Fading

From the Introduction of a classic text:

There are two fundamental aspects of wireless
communication that make the problem challenging

and interesting.

...First is the phenomenon of fading ...

...Second ...there is significant interference ... -y Fundamentalé ofl
7+ Wireless

communication

David Tse
Pramod Viswanath
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Learning Objectives

(dDescribe up and down-conversion in time- and frequency-domain

Describe the steps in the DAC and ADC including the filtering

JCompute a discrete-time and continuous-time base equivalent channels from the passband
Simulate fractional delays and gains in the sampled data

(dDescribe and simulate a deterministic multi-path wireless channel

dCompute the time-varying frequency response given the path parameters

(Describe a statistical model for multi-path fading

L Approximately compute the coherence time and bandwidth given a channel
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Outline

:>Review of Up- and Downconversion

dReview of TX and RX Sampling

dDoppler and Multi-Path Fading
(Statistical Descriptions of Fading
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Up- and Downconversion

Complex baseband  upconversion Real passband

| %
e < ' |

w ‘ w downconversion |
2 0 2

0 —f; 0 £

LRF communication systems:
o Information occurs and is processed in complex baseband

o Transmitted and received in real passband
dUp and down-conversion: Shift center frequency of signals

Also called mixing
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Up and Down-Conversion in Time Domain

upconversion
L Complex baseband: | > Real passband: up(t)

° Two real signals, u; (t), uq (t)

= Jwct
> Or one complex signal: up(t) = Re(u(t)e’®")
u(t) = u (6) + juo(t)
downconversion

|
< et Note: downconversion needs:
v(t) = Zup(t)e™/®e * Multiplication by 2

u(t) = hypp(t) *v(t) * Low pass filtering
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Mixing in Frequency Domain

(dBaseband signals UF)

o Centered around f = 0, complex

° % = single sided bandwidth N

o W = two sided bandwidth c|)

. w _w w
o Band-limited to |f| < B 2 >
A/2

QPassband signals u(f)

o Centered around f = f,, real | ‘ |

o W = bandwidth (per side or image) | | | >

o Band-limited to |f — f| < % —Je 0 fe

< > W
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Discrete 1Q Mixer

LLO = “local oscillator” = square or sine wave at f,

11, 12 =1 and Q inputs.
o Generally, lowpass

LRF = passband output centered at f,

http://www.markimicrowave.com/Mixers/IQ Quadrature-
IF Double-Balanced/IQ-0318.aspx

Datashe RF [GHz] LO IF [MHz] Conversi Image Amplitud Phase Isolations Isolations

et [GHZz] on Loss Rejectio e Deviation L-R [dB] L-I [dB]
[dB] n [dB] Deviatio [Degrees]
n [dB]
IQ-0318 3to18 3to18 DCto 500 7 22 0.75 10 40 20
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http://www.markimicrowave.com/Assets/datasheets/IQ-0318.pdf
http://www.markimicrowave.com/Mixers/IQ_Quadrature-IF_Double-Balanced/IQ-0318.aspx

Baseband Equivalent Channel

A |f

s(6) 5p() o Yo (£) %0, so) |9 o
Upconvert Filter Downconvert Filter

Filtering at passband equivalent to complex baseband filter

JAssuming downconversion filter is ideal:

[ Hy(F) = Hy(F + 1) for If] < J

o Simply shift H,,(f) to the left by f..
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Important Special Case: Delay

Passband channel Baseband equivalent
channel

[ hy(t) = AS(t — r)} E—) [hb(t) = Ae 2T (t — 1) }

A = gain
T = delay
0 = 2nf.t = phase rotation

A = gain
T = delay

Delay, gain in passband = delay, gain and phase rotation in baseband
dProof: |
° Passband frequency response is: H,(f) = Ae~2Tift

> Baseband frequency response: H, (f) = H,(f + f.) = Ae 2™ Uct/)T
o Equivalent impulse response: h,(t) = Ae 2™/T§(t — 1)
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Synchronization and Delay Errors

y(t)
Y Y r(t) = r(t + 1)
Delay = AelPs(t — 1 = AelPs(t — At
s(t) & gain ( ) > Shift ( )
C ‘ ACel? 5 | )
| R Delay estimate T
0 ' T ‘

Sync

UTime synchronization at the receiver:
o Estimate the arrival time of the signal 7

o Starts processing remainder of signal starting at 7
o Equivalent to shifting received signal ahead in time by 7: y(t) = r(t + 7)
o Remaining time error: At =17 — 17

ULater, we will discuss:
> How to estimate T (synchronization) and how to correct for gain and phase error (equalization)
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Frequency Errors

s(t) —»@J ——> Y :? r(t) = S(t)ef((wo—w1)t+(90—91))

LO 1 w1, 01 LO 2 W, 92

(dOscillators at TX and RX always have some mismatch. To analyze, suppose:
° Upconversion: s,(t) = Re(s(t)ej‘“l”el),

o Downcoversion: r(t) = LPF( ZSp(t)e_(jwzHQZ) )

QL0 error leads to time-varying gain: (t) = g(t)s(t), g(t) = e/(@o=w1)t+(00=01))
° Frequency and phase shift
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In-Class Problems

Problem 1: Plotting a Frequency Response of a Delay Channel
Consider a system with the following parameters

bw = 20e6; % bandwdith
pl = 89; % path loss (dB)
tau = 200e-9; % timing error

Plot the real component of the frequency response at 1024 points over the bandwidth. Assume phase = 0 at DC. Use 1024 frequency

points

Problem 2: Plotting the Channel Response from Frequency Error

Suppose a link has the following parameters:

fc = 37e9; % carrier freq
loppm = 1; % LO error in ppm

Plot the relative change of the gain:
E(t) = |g(t)-g(t+tau)[~2 / |g(t)|~2

as a function of tau from 0 to 5 us.
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Outline

dReview of Up- and Downconversion

:>Review of TX and RX Sampling

dDoppler and Multi-Path Fading

(Statistical Descriptions of Fading
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Typical Digital Communication Path

us(t) u(t) r(t) v(t)

I 7[n]

sin] —

TX samples Ideal D/A Do (£) henan (£) Drx (1) Ideal A/D  RXsamples

JAIl modern communication systems TX and RX digital samples

dTransmitter: DAC + filtering with p;, (t). Filtering used to:
o Suppress out of band emissions

Receiver: Filters with p,-,(t) then performs ADC. Filtering plays two roles:
> Reduces noise

o Remove out-of-band signals before ADC. (i.e. Anti-aliasing)

Filter design discussed in digital communications class
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Review of DTFT

L Given discrete-time sequence s[n]
o Real or complex

QDiscrete-time Fourier Transform: S(Q) = Y, s[n]e /"

inverse DTFT: s[n] = %f_nnS(Q)ejQ"dQ

Note S(Q) is always a 27 periodic signal
o Can take integral for inverse DTFT on any period of 2w

Q is the discrete frequency. Units is radians per sample.
For finite length signals and finite number of (), can be computed via FFT

(dReview in your signals and systems class
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Common DTFT Pairs

Time domain Frequency domain EISee Wlklpedla

x[n] Xom(w)
d[n] Xop(w) =1
d[n — M) Xow(w) = e~M
iuMm _ 2T 2k
Tanl) = m—z—me M k;uoa ( - ﬁ)
(M-1)/2
= 2 = 2
m;m d[n — Mm] Xo(w) = 5 k=‘{%{1w5 (w - E) odd M
My
2w —~ 2k
Xo(w) = H%ﬁ&( M ) et X,(w) = 7[6 (@~ a) + 8w+ a)],
g cos(a - n) x a = X (w — 2k
Xpr(@) = —— 7 > 8w 2k) (@) & 3 Xofw— 20
2 e e
uln. ™
Xo(w) = ] l_w + 7 - §(w) sin(a - n) Xo(w) = n [0 (w—a) —§é(w+a)]
~° n— M/2 sinfw(M +1)/2] i
1 rect[ ] Xolw)=———¢ 2
a"uln] Xon(w) = 1 — M sin(w/2)
— ae 2!
. 1 w iaw
X,(w)=2m-§(w+a), m=<a=m sine(W(n + a)) Xo(w) = W rect ( SV )e
e Xy (w) = 2 5(w+ a — 2k inc? _ 1
am (W) “k;w (w+ a —2mk) sinc® (Wn) X, (w) — tr1( ZTFW)
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Discrete-Time Systems

H(Q) —— 7[n]

\ 4

s[n]

Consider discrete-time LTI system

dTime-domain: Characterized by impulse response h[n]
rln] = h[n] * s[n] = z hik]s[n — k]
K

dFrequency-domain: Characterized by frequency response H ()
R(Q) =H(Q)S(Q)

o R(Q) = Yr[nle™ /™, r[n] = if” R(Q)e’dn

21T YT
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DT Equivalent Channel

s[n] r[n] s[n] r[n]
— DAC Dex (L) hchan(t) Prx(t) ADC (— H(Q) —

y

l

\ 4

\ 4

\ 4

[ Discrete-time baseband equivalent channel:
o Describes equivalent mapping from s|n] to r[n]
o Includes effects of TX and RX filtering and continuous-time baseband channel

UBand-limited filters:
o Suppose one of P.,, P;, is bandlimited to |f| < % (no out-of-band emissions or aliasing)

o Then, discrete-time equivalent channel reduces to:

1 Q Q Q
H(Q) = By 5= | Pex \ 5= | Henan \ 5—= | for Q] <m
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|deal Filtering

s[n]
—{ DAC

y

Dex (L)

\ 4

hchan (t)

Prx(t)

\ 4

\ 4

ADC

(dSuppose sample rate f; = %

d“ldeal” TX and RX filter :
1 .. t
° ptx(t) = prx(t) = \/_TSIHC (;)

o In frequency domain: P-.(f) = P..(f) = VTRect(fT)
o Also called “brick wall” filter

dMost practical filters match this well
o Up to gain and delay
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s[n]

— H(Q)

Ptx(f) = Prx(f)

4

A

VT




|deal Filtering

s[n] r[n] s[n] r[n]
— DAC Dex (L) hchan(t) Prx(t) ADC (— H(Q) —

y

l

\ 4

\ 4

\ 4

(JAssume TX and RX filters are ideal

dTheorem: DT equivalent channel is the re-scaled continuous-time channel

Q)
H(Q) = Hepgn (ﬁ)

o Frequency f mapped to ) = 2nTf
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Special Case: Delay

_ Continuous-Time Baseband Discrete-Time Baseband

Impulse response hy(t) = A6(t — 1) hehan(t) = Ae ™95 (t — 1) h[n] = Ae J%Tsinc ( )
T

Frequency response H,(f) = Ae~J2mfT Hopon (f) = AeI@cte=J2mfT H(Q) = Ae J®cTe=I0T/T

dSuppose passband has a gain and delay.

Then discrete-time frequency-domain: gain and linear phase rotation over frequency
o Rotates 2 7/T radians every period

Win discrete-time time-domain: gain, constant phase rotation and sinc filter with delay
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Sinc Filter with Integer Delays

ASuppose we have ideal filtering and passband has delay and gain

dFrom previous slide, r[n] = h[n] * s[n], h[n] = Ae /®<Tsinc (%)

e

Special case 1: No delay 7 = 0: h[n]
o h[n] = Ad[n] = r[n] = As[n]
o Baseband channel introduces only gain

v

(ASpecial case 2: Integer delays T = kT
o hin] = Ad[n — k] = r[n] = As[n — k] A
o Baseband channel introduces gain and integer shift h[n]

(JEx: Suppose sample rate is 20 MHz and signal is delayed by 400 ns.

v

L : : .20
o Integer delay in discrete-time signal is 0a= 50 samples k
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Sinc Pulses with Fractional Delay

Qh[n] = Ae /¥<Tsinc (2) : . . . . . .

r 05 1-._ - T = 5
dCauses blurring over multiple samples QP Q FOoT00-06-000¢ Foees
5 15 1:3 1I5 2::} 2|5 3::} a5
Uinter-symbol interference : . — . . .
0s5f It-,l . T=13
dWill need equalization to correct o-o-0-0-0-00-0-07060 L b pE 0000000600 00000

o More on thIS Iater 05, 5 1:3 15 20 25 3::} 35

T T T T
i
05 I.'T \ _
(-E-S-0--6-600BE = (P e e -0 7 =132

-0.5 '

o = =) = e A ." ' . = = ~, =W . T - 13-5

05 ! 1 1 ! 1 1
0 5 10 15 20 25 30 35
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Simulating Fractional Delays in MATLAB

(dCode on previous slide was create with DSP toolbox

tau = [0,8,8.2,8.5]); 3% Delays in fractions of a sample
Create a fractiomal delay object from the DSP toolbox
curate method. It i=s important to select the options

%
% We select the Farrow interpolation, which is a fast
%
%

dly = dsp.VariableFractionalDelay(...
'ITmterpolationMethod', 'Farrow','Filterlength',8, ...

'FarrowSmallDelayaction', 'Use off-centered kernel'}:

% Create delays of the seguence Creates T x D matrix
y = dly.step(x,tau); Row i is delayed by 7(i)

A
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In-Class Problem:
Fractional Delays on Constellations

Problem 3: Effect of Delay on a QAM Constellation

In this problem, we will show the effect of fractional delays on a TX constellation.

First, we generate random QPSK symbols| 1 5—au= 10.00 1.5 —t2u= 1010 415 tau= 10.50
. . . ®» @
% TODO: Generate nb=10624 bits using the randl command. ap G
y i 1 © O 17 a @ 1 1r@D @D GiD
% bits = ... % &
nb = 1024;
bits = randi(2,nb,1)-1; 0.5 0.5f 05F
ap G o)
0 0f 0 +CGED -Z.II‘LE' iliB
@ a» G
-0.5 1 -05} 1 -05F
- Af -1+
1 & & ff: @
QT
15 : -15 4 -1.5 ' ’ ’
1 0 1 1 0 1 -1 0 1

NYU

TANDON SCHOOL
OF ENGINEERING




Outline

dReview of Up- and Downconversion

dReview of TX and RX Sampling

:>Doppler and Multi-Path Fading

(Statistical Descriptions of Fading
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Receiver with Local Motion

7, = (dy + vtcosB)/c

%D Mobile VEIOCity v
—

Tg = dO/C

dWith the RX in motion, the propagation delay changes with time.
dIn complex baseband signal:
—q 'Zn(—t—v cos 0—dyf, )
r(t) = ae 79T Oy(t —1,) = ae’ c ¢ u(t — t4)

dLocal motion assumption: u(t — ;) = u(t — ) for t small
o Effect of the change in propagation delay is only in the complex exponential

. tv
dThen: r(t) = ae]m(_7 c08 B_d‘)fc)u(t — Tp)
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Doppler Shift

Single path with local motion:

[ r(t) = go /¥ u(t — 7o) ]

Complex gain: g, = ae 2™%ofc
vf. cos 6O

o

o Doppler shift: f; = —

c
o Delay: 1

JFor a single path: Local motion causes a phase rotation, but no change in amplitude

% TANDON SCHOOL
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Example: Computing Doppler Shift

H/ﬂ =100 km/h

dSuppose: carrier frequency is f.=2.1GHz Car moves towards a base station at 100 km/h.
dWhat is the Doppler shift?
QAnswer: v=100km/h=27.7 m/s, c= 3(10)® m/s, 8 = 180:

vfecos (27.7)(2.1)(10)°(-1)

Af = — —~ ~ 194 H
f c 3(10)8 ’
If the angle away from BS at 8 = 45:
vf.cos8 (27.7)(2.1)(10)° cos(45
Af = fe _ (27.7)(2.1)(10)" cos( )z—138Hz

c 3(10)8
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Multi-Path Models

(Most channel consists of many paths
o Direct paths

. . . . . Reflect
o Reflections, transmissions, diffraction, ... Cluster

o LOS and NLOS paths

(ap, Tp, dp)

Figure 3.1: A Single Reflector and A Heflector Cluster.

JWideband time-domain baseband model:

L
r@®) =) geelortx(t =)
£=1

o gp: Complex path gain
2TV f,

° Wy = — cos 8, : Doppler shift of path

o T,: Delay of the path
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Time-Varying Frequency Response

OMultipath channel: y(t) = Y5_, goe/“ttx(t — 15)
QConsider exponential input: x(t) = e/t
Qoutputis: y(t) = H(t, w)x(t)

U Time-varying frequency response

4 . I
H(t, a)) — gfej(w{’t_wrf)
=1
\ J

QMay also write: H(t, f) = H(t, 2nf)
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Example with Two Paths

— ——@

Ty, 62

dTo simplify understanding, consider two path model

. : w; = —2 Tfgmax COS 0;
r(t) = hye/®1tu(t — tq) + hye!®2tu(t — 1,)

JTime-varying response:
H(t, a)) = hlej(w1t—wT1) + hzej(wzt—wrz)

JPower gain:
P(t,) = [H(t, )| = [hyel@1070m) 4 el @t
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Variation in Time Pt g) = [y @500 4 o @ntson]

AV ICICTA)
1 0 T T T ECl

e Fixed frequency w,

w

e Look at time variations P(t, wg) \ A A A\ /

o

e Rate of variation depends on Doppler spread:
Af = frax(cos 8 — cos 6;)
e Size of variation depends on spread of gains:

o Avg: |hy|? + |h,]*

&
T

Channel gain (dB)
o o

-20 |

o Min: (Jhy| — |h,|)?: Destructive interference sl —Deta=0 |
e Max: (|h{| + |hy|)?:: Constructive interference = | | e —
. ] 0 0.05 0.1 0.15 0.2
e With equal path gains, there are nulls Time (sec)

Plot shows f,,ax =10 Hz,
01 = O, 92 == 180,
hy = 107%9%%h,, |hy|* + |hy|* = 1

D TANDON SCHOOL
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Variation in Frequency  »u,w) = jreionsn 4 meiwnssny

Fixed frequency t, L=

Look at time variations P(t, wg) N A A\ A\ L

o 0
e Period of variation depends on delay spread: E’
T
Af = 2.10
/ T,—T 2
. L o =
e Size of variation depends on spread of gains: S 20 p—————]
o AVgZ |h1|2 + |h2|2 ——=Delta = 3
.« Mi (lh | |h DZ 0 Delta'= 10
in: — i | | .
1 2 , 10 5 0 5 10
e Max: (|h{| + |h,|) Freq (MHz)

Plot shows
71 = 0,7, = 200 ns,
hy = 107%9%%h,, |hy|* + |hy|* = 1

% TANDON SCHOOL
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IE Q13
10 . . 5,4 A e )

gl _
Fadi Ng N A A A A
e Over time and frequency, paths can either Ea
©-1571
e Constructively interfere = Peaks S .l
o Destructively interfere = Nulls 25 oainea |
0 . . . Deltla:10
0 0.05 0.1 0.15 0.2
Time (sec)
* Process is called fading 10
* Intermittent channel quality S NA A A g
e One of the most significant challenges in wireless 3
e Later, we will discuss how to overcome fading G20 —Delta=0 |
——=Delta =3
DeI}(a=10
-30 —
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Narrowband Approximation

NYU

QMulti-path channel: 7(t) = Y5_, gse/ @t x(t — 1))
Define delay spread: § = max T, — 7|

o Max path difference in seconds

QdNarrowband approximation: X (f) is band-limited to |f — f°| « % then

[ r(t) = H(t, f°)x(t — 7o) ]

o Proof below

o Coherence bandwidth = %

QEffective single path gain: g(t) = H(t, f%) = Zﬂsﬂggej“’f’t_jwow:
o Channel appears as a single path channel with time-varying gain
o Channel gain g(t) is band-limited to max Doppler max w,
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9>

To 71 Ty

\ 4

S pafy

ol [ vl R '|I !u”.l\' '|II I|‘.'"'.I
¥

-

[ (7]
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Example: 3GPP Cluster Delay Line Model

fc = 2.3e9; % carrier in Hz 3GPP has several deterministic multi-path models
dlySpread = @.5e-6; # delay spread in seconds
#% Get NR channel object and data Dca”ed CIUSter_Delay Line (CDL)

chan = nrCDLChannel( 'DelayProfile’, 'CDL-C",...

‘DelaySpread”,dlySpread, 'Carrierfrequency’, fc, ... [ 1Can be downloaded in MATLAB 5G Toolbox

'"MormalizePathGains®, true);

chaninfo = info(chan); o Gives the gain, delay and angles of each path
o This ex: CDL-C with 24 paths
Path delay profile Path AoA azimith profile
0 o ? [ [ [ [ [ [ [ Path gains vs. azimuth AocA
[ B 90
® & )
_5(” o | 120 60
-, £
» 1L 9 | 180 iﬁ gain = chaninfo.AveragePathGains’;
_ 7 - acafz = chaninfo.Anglesfod’;
%45 ? (-X] aocakl = 9@8-chaninfo.AnglesZold”;
3 2 97 180 dly = chaninfo.PathDelays";
-25 ‘ I 210
_300 D.I5 ‘; 175 é 2.I5 I;- 3.5 1;- 4.5 270

Delay (us)
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Computing the Doppler of Each Path

NYU

dComputing the Doppler shift of each path

° Suppose that RX has velocity vector v = (v, vy, v;,) Direction of
o Doppler shift of path £ is: f, = —%vTug = —% |lv|| cos 8, arrival vector ity
. . . . 6,
In this simulation: v = 30 m/s in x-axis » RX velocity v
] T
—
% UE velocity vector in m/s st e ; 1
ueVel = [38; 8&; @&]; ° T;
10 ® 1
% Create a unit vectors in the direction of the path g
[ux, uy, uz] = sph2cart{deg2rad(acalz), deg2rad(aocakEl), 1); '§45
U = [ux uy uz]; £
D--zu
% Compute Doppler shift
vc = physconst({'Lightspeed’); 251
fd = -fo/vc*U*ueVel;

a0 . . . . . . .
=250 -200 150 -100 50 0 50 100 150 200 250
Doppler (Hz)
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Computing the Narrowband Response

NYU

ONarrowband response H(t, f°) = Y5_, g{)ej“)ft_j“)off

QPlotat f° = 0 and 1 MHz
dMax Doppler {44 = 200 Hz

. L 1
© See fast variation on order I —
dmax

(JCan see deep fades

Gain [dB]

TANDON SCHOOL
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= 5ms

Freq= 0.00 MHz

Gain [dB]

tn

dn

Freq= 1.00 MHz

0.02
Time [s]

0.04

ooz
Time [s]

0.04

% Compute the fading gain over time

Tt =

linspace(8,8.85,1888) " ;

npath = length(gain);

% Random initial phase on each path at freq = 8
phié = 2*pi*rand(npath,1);

% Number of frequencies to test
ftest = [B,1e6];
nfreq = length(ftest);

for

end

i=1:nfreq
% Initial phase
phi = phie —|2*pi*ftest(i)*dly;

% Gains on each path
= db2mag(gain).*exp(1i*(2*pi*fd*t" + phi) );

]

% Sum over paths

E = sum(G,1).";

% Get power gain

gpow = 2@*logle(abs(g));

subplot(l,nfreq,i);

plot(t, gpow, 'Linewidth’, 2);

grid on;

xlabel( ' Time [s]");

ylabel('Gain [dB]');

title(sprintf( Fregq=%7.2f MHz ', ftest(i)/1le6));
ylim([-15,15]);

xlim([@,8.85]);




Narrowband Approximation Proof

O Want to show: IfXg ) band- I|m|ted to |f — [ NPy g1
thenr(t) = H(t, f°)x(t — 1) 9o 1
QProve this for f© = 0. Other frequencies are similar. 92
dThus, X(f) is bandlimited to || < %. I
To T T
dTherefore,x(s;) = x(s,) for |s; —s,| <6 o ‘ ?
|
Qin particular x(t — 1;) = x(t — 1) since |t —1y| <6 0
dHence:
= S g e
r(©) = ) geeOx(t =) = ) grelrtx(t 7o) A
=1 £=1 ! i” |
= H(t,0)x(t — 19) -
To
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Examples: When is Narrowband Valid?

UBluetooth
o Bluetooth hops over channels of bandwidth B =1 MHz each. =l -
. e amm
o Indoor delay spread typically << 50 ns —:}ﬂ qu\_l,!'—'h,l =
o Coherence bandwidth 1_1_ 20 MHz > B Ei— -F_é}ﬁiﬁ
§ 50 S,
o Narrowband approximation valid i

LLTE outdoor cellular system
o A typical channel is B =20 MHz

o Qutdoor delay spread 6 = 1 us
o Coherence bandwidth % = % =1MHz <« B

o Narrowband approximation not valid
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OFDM Time-Frequency Grid

Subcarrier (JOFDM modulation: Widely-used method
spacing o 4G and 5G cellular systems
Af = % o Many 802.11 standards
>
§ Divide channel into sub-carriers and OFDM symbols
Qg; o Resource element: One time-frequency point
&= O . L
(Data is transmitted is an array: X|[n, k|
o k = OFDM symbol index
o n =subcarrier index
o One complex value per RE.
OFDM symbol .
— [———— o Called a modulation symbol
Tsym
(JSee digital communication class
Time ——— o We will also review again when we discuss equalization
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OFDM Channel with Fading

(JOFDM channel acts as multiplication:
Under normal operation (delay spread is contained in CP):

Y[k,n] = H|k,n] X[k,n]
A f N
RX symbols Channel  TX symbols

(JOFDM channel gains can be computed from the multi-path components

L
H[k’ n] — z /Efe—ZTL'j (Tkfp+Sntp+chyp)
=1

o T = OFDM symbol time, S = sub-carrier spacing
o For each path: f, =Doppler shift, T, =Delay, ¢, = phase of path, E, = path received energy
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Summary

Single path with no motion: /

o Delay and constant phase shift

dLocal motion in single path causes Doppler
o A time-varying phase rotation

Gain [dB]
5 b R 5 @

o But channel gain is constant T e

dMultiple paths causes fading Q
o Constructive and destructive interference of paths
o Variation in gain over time

(Described by a time-varying frequency response H(t, f)
o Variations is time due to Doppler spread

o Variations in frequency due to delay spread
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In-Class Exercise: OFDM Channel Response

Problem 4: Computing an OFDM Frequency Response

Consider a system with the following parameters. These paramters are similar to common configuration for a 5G NR system used in the mmWave system

scs = 128e3; % sub-carrier spacing
nsc = 12*68; % number of sub-carriers
tsym = 1e-3/14/8; % OFDM symbol period 0 , ] , , , , ; , -
nsym = 1688; % number of symbols to plot - : — - - = 1 &
.
% Channel parameters 2l - - - - - - - Bk
fc = 73e9; % carrier frequency - - .
v = 18; % RX velocity in m/s 3t - — — = - — 10
dly = [&,28,58] " *1e-9; #% Delay in sec of the paths = - — - - - -
theta = [@,pi/4,pi]"; % Path AoA relative to motion ~%4: - i ~ - |
gaindB = [8,-3,-5]"; % gain of each path in dB E 5 [ .
% Random initial phase of the gains 6 — - - -
npath = length(dly); o — - : . - — ] 40
phi = rand(npath,1)*2%pi; - - . . -
g - — - — 50

Freq (MHz)
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Outline

dReview of Up- and Downconversion
dReview of TX and RX Sampling
dDoppler and Multi-Path Fading

:>Statistical Descriptions of Fading
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Statistical Model

dFading depends on the multipath distribution

D Multipath is site-specific

U Statistical model:
o Describes a probability distribution of channels

o Trained on an ensemble of channels in some environment

dUsed in evaluation of communication system

JExample questions:
o How well does a system do on average?

o What is the probability that | will obtain sufficient coverage?
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Random Path Statistical Model

RX signal has many random, independent paths

dTime-varying frequency response: ge:Te O

1 L .
h(t,f) = —= goemi(tfacos O+ fTe) Direction of motion

VL £ip=1

o Assume (gy, T, 0p) i.i.d.
o Path gains: g, are zero mean and E|g,|? = G,

UAs L —» o, h(t, f) is a complex Gaussian, h(t, f)~CN (0, G)
o Follows from Central Limit Theorem
° Independent real and imaginary components
° (o: Average power gain
o Variance G,/ 2 for real and imaginary components

@ TANDON SCHOOL
NYU | Zroonsstoo.




Rayleigh Distribution

dRayleigh fading: Channel response is h(t, f)~CN(0, G,)
Probability distribution

ULet R = |h| magnitude e e ]
o Represents amplitude gain mf_ iy ]
B —:
; Iy ]
QHas Rayleigh distribution: ot ]
> PDF: p(r) :%re_’"Z/P Zz
o CDF: PR<r)=1—e " /P g = ]

6

0 2 4 . 8 ]-0
o Mean: E(R) = /Gg—n

> Second moment: ER? = G, https://en.wikipedia.org/wiki/Rayleigh_distribution
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Exponential Distribution

U Consider Rayleigh fading complex gain h~CN (0, G,)

Magnitude R = |h| is Rayleigh
P(R=r1)=e""/o A5

.00
Qinstantaneous gain G = |h|? has exponential distribution ;]\

P(GZQ)=P(RZ\/§)=€_Q/GO u.za- \

.00 F
'l 1 L
1] 1 2 3

o Average gainis E(G) = E|h|? = G,

| 1
o PDF for 1 = ——
dFor channel, G represent power gain (in linear scale) or E(G)
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Example Calculation

(ASuppose the channel experiences Rayleigh fading.

JWhat is probability gain will be 15 dB below the average?
o Called a 15 dB fade.

JAnswer:
o Gain is 15 dB below average when G < 10701(5)G,

107 L

Probability

> From exponential distribution:

P(G < BGy) =1—e BG/Go =1 ¢ F
o Forsmall 8, P(G < BGy) = fB
> For 15 dB fade, f = 107%1(1% ~ 0.032. . | | |

Fade [dB]

-
o
'
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Doppler Spectra

(JConsider statistical model:

h(t f) — \/_z gy eZnL(tfd cos O0,+f1p)

o Paths are i.i.d. and g, are zero mean, EIg{»I2 Go
o Assume L is large

dFor a given (t, f), complex gain h(t, f)~CN (0, G,)
As varies (t, ), h(t, f) is a Gaussian random process

JAuto-correlation:

R 8) BTG St 2k )

o Describes how correlated the process is over time and frequency
o Depends on the distribution of angles 8, and delays 7,
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Jakes Model

LAt a fixed frequency fy: Gain (dB) Angle (rads)
1 L .
h(t’ fo) e _z gﬁeznl(tfd CoS 0g+f0'l'[) : : (L= PR el I S [ T
VL &ie=1 Jakes A Illﬂirﬂﬂliﬂnﬂﬂ ’ \. Y/ | [ \ﬂ
1 L . : | |'""| I|I
= — gpelmitfa cos Oy Angles unif [0,2] = ’ ﬂd 'RJ |)) |
\/Z £=1 -2 ' " l‘ \
-40
Dcomplex GaUSS|an process 0 0.2 0.4 0.6 0.8 1 L1 0.2 0.4 0.6 0.8 1
L Statistics depend on angular distribution 0 T 2
Asym Jakes 2 0
dJakes model: cosf € [0.9,1] : 2
o Angles uniform from [0,27] 0 02 04 06 08 | 0 02 04 06 08 1
L Asymmetric Jakes: , -0 15
o 0 € [0, 6] uniform Asym Jakes B_h“““x \x /
: — -. 1 _.
QAngular spread: cos ¢ € [-0.1,0.1],, |
o Arises from diffuse reflection 0 02 04 068 08 1 %% 02z 04 08 08 1
Time (sec) Time (sec)
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Fading Models in MATLAB

(JComm Toolbox:
o Efficient, general fading models

Create a comm.RayleighChannel object

dRun the channel to get:
o Qutput and gain

TANDON SCHOOL
OF ENGINEERING

NYU

% Create Doppler models
nmod = 3;

dopMod = cell (nmod, 1) ;
dopMod {1}
dopMod{2} = doppler('aAsymmetri

= doppler('Jakes"):

dopMod{3} = doppler('aAsymmetri

% Simmlate the

for i = (1:nmod)

T o= ]
c Jakes',

T o= ]
c Jakes',

[0.9 11):
[-0.1 0.1]):

channel gains for each model

chan = comm.RayleighChannel {...

'SampleRate', fsym,
'MaximumDopplerShift',
'DopplerSpectrum’ ,

'PathGainstutputPort',

[¥, gain] = chan.step(x):

'AveragePathGains', 0,

fdma=x, ...

dopMod{il},

true) ;




Auto-Correlation

UFix a frequency f, and consider auto-correlation over time:

R(6t) = E[h(t, fo)h* (t + 6t, fo)] = Gy E{e?™ (Ot acos Oo)}
o Expectation is over angle 6,
o Depends on distribution of 8,

dPlot: R(St) for 6 uniform in [—6,,, 6,,]
o Computed numerically in MATLAB (see demo)
o Plotted vs normalized delay f;6t

o For 8,, = 180° = Jakes spectra
1

2fa

JAs angular distribution is smaller: ool
o Correlation is higher with delay 01t

o Highly directional channel vary slower 0

——theta = [-180,180]| |
——theta = [-60,60]
theta = [-30,30]

o 2
3] w0 -

=
-

<
=2}
T

o Uncorrelated at 0t =

Abs correlation

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Normalized time (t*fdmax)
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Computing Auto-Correlation Numerically

H H H H % Function handle for the integrand
Dcorrelatlon In preVIOUS Sllde rfun = @(theta,tf) exp(1i*2*pi*cos(deg2rad(theta))*tf);
2 (6tf 9 ) % Angle ranges to test
— Tl d COS Up } thetaMaxTest = [180, 68, 3e];
R(at) - GO E{e ntheta = length(thetaMaxTest);

o Expectation is over angle 6, Y Timee to test:

t = linspace(8,5,188),;

. . nt = length(t);

(dGenerally, no analytic solution
% Compute correlation for each angle range and time
Rcorr = zeros(nt, ntheta);

L Compute via numerical integration legstr - cell(ntheta,1);

for j = 1:ntheta

o See demo 1 - - - - - thetam = thetaMaxTest(j);
0ok —theta = [-180,180]| | legStr{j} = sprintf('theta = [-%d,%d]"', thetam, thetam);
——theta = [-60,60] for i = 1:nt

theta = [-30,30]

Z1 = integral(@(theta) rfun(theta,t(i)), -thetam, thetam);

0.7 b
'*;%u.s— Rcorr(i,j) = abs(Z1/(2*thetam));
© end
g %® end
Qoar
< 03k plot({t, Rcorr, 'LineWidth', 2);
grid on;
0.2

x1abel( 'Normalized time (t*fdmax)', 'FontSize', 14);
ylabel('Abs correlation’, 'FontSize', 14});
legend(legStr, 'FontSize', 14);

o 05 1 15 2 25 3 35 4 45 5
Normalized time (t*fdmax)
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Coherence Time and Frequency

Consider time varying frequency response H(t, f)

JCoherence time:
o Max interval At where H(t, f) = H(t + At, )

o How fast channel changes in time
1

o Related to Doppler spread=

fmax_fmin

ceived power, dB relative to RMS
=

[ Coherence bandwidth
o Max interval Af where H(t, f) = H(t, f + +Af) E B
o How fast channel changes in frequency

L L
1 0 0.2 0.4 0.6 0.8 1

R

° Related to delay spread~ ——— Time,seconds
fmax=tmin Realization of a Jakes
UCritical for many procedures: process with 1/f__ =0.1 sec

o Channel estimation, tracking, coding, ARQ, ...
o More on this later
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Winner-3GPP-Spatial Cluster Model

Cluster n =—————, N
Subpathm — B o From 3GPP SCM-132
BS array A Qu 6y v

n,m,AoD en’m,Ao 5 [ .
N K o by
V:V On, AoD '.\ ..... { ........... .

o X7  \ e e Ous A 1

................. \ 0 o MS array broadside MS array
L :
Ons ; MS direction

BS array broadside of travel

(dPaths arrive in clusters.
Clusters have subpaths (also called rays)

dEach cluster has:
o Center angle and a statistical model for the delay and angular spread
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Fading at Different Time Scales

Three mechanisms for path loss variations

log( 4%  Shadowing
Marrowband Fading

Distance-based path loss

Shadowing

1R

Small-scale multi-path fading

Faster

0 log (did )

Figure 3.8: Comhbined Path Loss, Shadowing, and Narrowhand Fading.

From Goldsmith, “Wireless Communications”
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Fading at Different Scales Models

Small-scale fading from Rayleigh or Rician ~ 1 wavelength 15 ms

multi-path fading distribution (v=10m/s, fc=2GHz)
Large-scale fading Lognormal distribution 10 to 100 m 1to 10 sec

from variations in

shadowing

Path loss variations Path loss exponent 100 m or larger 10 sec

Different fading processes and variations occur at much different time / space scales

(dMethods to combat these are different
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