Demo: Simulating Fading Channels

MATLAB has many excellent routines for simulating various multi-path fading models. In going through
this demo you will learn to:

« Simulate fractional delays using the DSP toolbox

« Describe multi-path channels with arrays of delays and angles

» Plot the time-varying frequency response for a deterministic multi-path channel
» Load the deterministic 3GPP NR channel model

« Simulate narrowband statistical fading models

Simulating a Fractional Delay

Simulating wireless channels requires simulating fractional delays. This can be done easily in MATLAB
as follows.

tau = [0,8,8.2,8.5]; % Delays in fractions of a sample

R

Create a fractional delay object from the DSP toolbox
We select the Farrow interpolation, which is a fast
and accurate method. It is important to select the options
correctly
ly = dsp.VariableFractionalDelay(...
"InterpolationMethod', 'Farrow','FilterLength',8,...
‘FarrowSmallDelayAction’, 'Use off-centered kernel');

Q R X R

% Generate a sequence of length nt with an impulse at to

nt = 32;

t0 = 5;

x = zeros(nt,1);
x(to+1) = 1;

tx = (0:nt-1)";

% Create delays of the sequence
y = dly.step(x,tau);

% Plot the results along with the theoretical sinc filter
ntau = length(tau);
for 1 = 1:ntau
subplot(ntau,1,i);
stem(tx,y(:,1));
hold on;
t = linspace(@,nt,1000)";
plot(t, sinc(t-tau(i)-te), '--");
hold off;
end

Two path channel: Variations in Time

To illustrate the concepts of multipath fading, we consider a simple two path channel.

% Parameters

0.2]'*1le-6; % path delays in us

dly = [0,

fdmax = 10; % max doppler shift

theta = [0,pi]’; % angles of the paths

deltaTest = [0,3,10]; % difference in dB between paths

% We first compute the narrowband response over time
% for a fixed frequency

fd = fdmax*cos(theta); % doppler shifts of the paths
ndel = length(deltaTest);

% Times to plot
nt = 1000;
t = linspace(0,0.2,nt)"';

% Compute the channel response over time for each delta value

H = zeros(nt,ndel);
legStr = cell(ndel,1);
for i = (1:ndel)

% Compute path gains

del = deltaTest(i);

hpow = [1 10.7(-0.1*del)];
hpow = hpow / sum(hpow);

h = sgrt(hpow)’;

% Compute the channel response
H(:,1) = exp(2*pi*1li*t*fd')*h;

% Add to legend
stri = sprintf('Delta = %d', del);
legStr{i} = stri;

end

subplot(1,1,1);

P = 10*logl@(abs(H)."2);

plot(t,P,'-", 'LineWidth",3),

grid on,

ylim([-30 10]);

set(gca, 'Fontsize', 16);

xlabel('Time (sec)');

ylabel('Channel gain (dB)');
legend(legStr, 'Location', 'SouthEast');

Two-path channel: Variations in frequency
We can now fix the time and plot the variations in frequency

% Frequencies to plot
nf = 1000;
f = linspace(-10,10,nf) " '*1e6;

% Compute the channel response over time for each delta

H = zeros(nf,ndel);
legStr = cell(ndel,1);
for i = (1:ndel)

value

% Compute path gains

del = deltaTest(i);

hpow = [1 10.7(-0.1*del)];
hpow = hpow / sum(hpow);

h = sgrt(hpow)"';

% Compute the channel response
H(:,1i) = exp(2*pi*1i*f*dly')*h;

% Add to legend
stri = sprintf('Delta = %d', del);
legStr{i} = stri;

end

subplot(1,1,1);

P = 10*logl@(abs(H).”"2);
plot(f/1le6,P, " '-", 'LineWidth',3),

grid on,

ylim([-30 10]);

set(gca, 'Fontsize', 16);

xlabel('Freq (MHz)");

ylabel('Channel gain (dB)');
legend(legStr, 'Location', 'SouthEast');

Simulating a Deterministic 3GPP Channel Model

We next simulate a narrowband on a deterministic channel. The 3GPP NR standard has several
deterministic channel models which are used for test cases in evaluating system. For this example, we
will use the model called 'CDL-C'. Since this model is widely-used, it is incorporated in MATLAB's
excellent 5G Toolbox. We get the data structure with the path info as follows.

fc = 2.3e9; % carrier in Hz
dlySpread = 0.5e-6; % delay spread in seconds

% Get NR channel object and data

chan = nrCDLChannel('DelayProfile', 'CDL-C',...
'DelaySpread’',dlySpread, 'CarrierFrequency’', fc,
"NormalizePathGains', true);

chaninfo = info(chan);

The chaninfo structure has the various parameters of each path including its gain, delay and angle of
arrival and departure.

gain = chaninfo.AveragePathGains';
aoaAz = chaninfo.AnglesAoA"';
aoaEl = 90-chaninfo.AnglesZoA';
dly = chaninfo.PathDelays';

We can plot the power-delay profile using a stem plot.

clf;

stem(dly*1le6, gain, 'BaseValue', -30, 'LineWidth', 2);
grid on;

xlabel('Delay (us)');

ylabel('Gain (dB)")

A0 F 4

Gain (dB)
£
€

—ED i i i i i i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Delay (us)

We can also plot the paths by their angle of arrival using the polarplot function. In this plot the length
of the line corresponds to its strength. We see this is a rich scattering environment since there are paths
arriving from all angles.

npath = length(gain);
g0 = 40;

for i = 1:npath
gi = max(-g@, gain(i));
polarplot([aocaAz(i), aoaAz(i)], [-g0, gi], 'b-0');
hold on;

end

rlim([-go0, ©]);

hold off;

title('Path gains vs. azimuth AoA');

Path gains vs. azimuth AoA

a0
120 o 60
-0 5
o
150 : P30
20 5
=] £
g)
30 /
C -
180 - H 0
C,)
\\
&
3 & 2 =)
210 LY 330
3
0
240 300

270

We next compute the Doppler shift for each path. Suppose the UE has a velocity vector uevel. Then
the Doppler of path i can be computed by:

fd(i) = fc/vc* (arr(i,:)*ueVel)
where vc is the speed of light, arr(i, :) is a unit vector in the direction of the path.
% UE velocity vector in m/s
ueVel = [30; 0; 0];
% Create a unit vectors in the direction of the path
[ux, uy, uz] = sph2cart(deg2rad(aoaAz), deg2rad(aoakl), 1);
U= [ux uy uz];
% Compute Doppler shift

vc = physconst('Lightspeed’);
fd -fc/vc*U*ueVel;

% Plot the Doppler shifts

clf;

stem(fd, gain, 'BaseValue', -30, 'LineWidth', 3);
grid on;

xlabel('Doppler (Hz)');

ylabel('Path gain (dB)');

&

Fath gain (dB)
o

-30
-250 -200 -150 -100 -50 0 50 00 150 200 250

Doppler (Hz)

We now generate the narrowband fading by
g(t) = \sum_k A(k)*exp(2*pi*i*fd(k)*t + i*phase(k))
where A(k) is the path gain, fd (k) is its Doppler and phase(k) is a random initial phase.
% Compute the fading gain over time
t = linspace(0,0.05,1000)";

npath = length(gain);

% Random initial phase on each path at freq = ©
phie = 2*pi*rand(npath,1);

% Number of frequencies to test
ftest = [0,1e6];
nfreq = length(ftest);

for i=1:nfreq
% Initial phase
phi = phie - 2*pi*ftest(i)*dly;

% Gains on each path
G = db2mag(gain).*exp(1i*(2*pi*fd*t' + phi));

% Sum over paths

g = sum(G,1).";

% Get power gain
gpow = 20*logl@(abs(g));

subplot(1,nfreq,i);
plot(t, gpow, 'Linewidth', 2);
grid on;

xlabel('Time [s]');

ylabel('Gain [dB]");

title(sprintf('Freq=%7.2f MHz', ftest(i)/1le6));
ylim([-15,15]);

x1im([0,0.05]);

end

Freq= 0.00 MHz

Freq= 1.00 MHz

15 15 T
1norf 10
5 51
)) '
= =
= 0Of = 0
= =
]]
3 -5
10 -10
15 ! ! -15 ! !
0 0.02 0.04 0 0.0z 0.04
Time [5] Time [5]

Simulating Stochastic Fading

MATLAB has excellent tools to simulate standard stochastic fading channels. The code below plots
random samples of fading paths under various fading models. Plotted is the gain magnitude and phase
over time. We can observe the following:

« Jake's spectrum has the fastest variations since it contains paths with Doppler from [-fdmax,
fdmax]

« The asymmetric Jake's spectrum has paths from [a*fdmax, b*fdmax] where [a,b] are specified in
the construction of the Doppler model. In models 2 and 3, [a,b] is a small interval and the Doppler
spread is small. As a result, the channel gain changes slowly

« In model 2 and 3, there is a linear phase across time depending on the center Doppler shift. In
model 2, the center is close to 0, so the angle does not change. But, in model 3, the angle
changes linearly over time

% Parameters

fsym = 1le3; % sample rate in Hz

fdmax = 10; max Doppler rate in Hz

nt = le3; 4 number of samples to simulate

R X

% Create an input sequence
t = (0:nt-1)"/fsym;
= ones(nt,1);

X

% Create Doppler models
nmod = 3;
dopMod = cell(nmod,1);

dopMod{1} = doppler('Jakes');
dopMod{2} = doppler(‘'Asymmetric Jakes', [0.9 1]);
dopMod{3} = doppler('Asymmetric Jakes', [-0.1 0.1]);

titleStr = {'Jakes’,
"Asym Jakes [0.9,1]fdmax"’,
"Asym Jakes [-0.1,0.1]fdmax'};

% Simulate the channel gains for each model
for i = (1:nmod)
% Create a Rayleigh fading object
chan = comm.RayleighChannel(...
'SampleRate', fsym, 'AveragePathGains', 0,
'MaximumDopplerShift', fdmax,...
‘DopplerSpectrum’, dopMod{i},
'PathGainsOutputPort', true);

% Run the channel
[y, gain] = chan.step(x);

% Plot the results
subplot(nmod,2,2*i-1);
plot(t, 20*logle(abs(gain)));
title(titleStr{i});
if i == nmod

xlabel('Time (sec)');
end
ylabel('Gain (dB)");

subplot(nmod,2,2*i);

plot(t, angle(gain));

if i == nmod
xlabel('Time (sec)');

end

ylabel('Phase (rad)');

end

Jakes

0 ' / — [
oy / Iﬁ'Ilf \M f _ﬂl fﬂ\‘fﬁ T2 { \‘
= ’\N[\I i i Il L f
c o0 | | o of|f
5 ! g |
© a -2 f ._,/’/\l

40
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0 Asym Jakes [0.9,1]fdmax

|
|
!
4
]
—
—
——_
—
—
—
—
—]
—
—

Gain (dB}
tn
_\'\\
N
Fhase (rad}
Pao@

=10
1] 0.2 0.4 0.6 08 1

Asym Jakes [-0.1,0.1]fdmax

0 /

=]
=]
(]
=
=4
=
oh
=]
[=:x]
-

)) B2
= ~ = J—
<10]
= \ / o —
oh = g
o -2 A
- 0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 08 1
Time (sec) Time (sec)

Plotting the Auto-Correlation

We next compute the auto-correlation for a narrowband model. The autocorrelation of a multi-path
process with random angle theta is:

R = E[exp(11*2*pi*t*fdmax*cos(theta)]

where fdmax is the max Doppler shift, t is the time and the expectation is over the angle theta. We plot
this function for:

e theta uniform on [-180, 180] degrees

» theta uniform on [-60, 60] degrees

We can use MATLAB's numerical integral routine integral.

% Function handle for the integrand
rfun = @(theta,tf) exp(li*2*pi*cos(deg2rad(theta))*tf);

% Angle ranges to test
thetaMaxTest = [180, 60, 30];
ntheta = length(thetaMaxTest);

% Times to test:
t = linspace(0,5,100);
nt = length(t);

% Compute correlation for each angle range and time

Rcorr = zeros(nt, ntheta);

legStr = cell(ntheta,1);

for j = 1:ntheta
thetam = thetaMaxTest(j);
legStr{j} = sprintf('theta = [-%d,%d]"', thetam, thetam);
for 1 = 1:nt

Z1 = integral(@(theta) rfun(theta,t(i)), -thetam, thetam);
Rcorr(i,j) = abs(Z1/(2*thetam));
end
end

plot(t, Rcorr, 'LineWidth', 2);

grid on;

xlabel('Normalized time (t*fdmax)', 'FontSize', 14);
ylabel('Abs correlation', 'FontSize', 14);
legend(legStr, 'FontSize', 14);

——theta = [-180,180]
——theta = [-60,60]
theta = [-30,30] |

0.9r

0.6

0.5

041

Abs correlation

011

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5]
Normalized time (t*fdmax)

