4/3/2020 Demo: Computing and Displaying Antenna Patterns

Demo: Computing and Displaying Antenna Patterns

In this demo, we will illustrate some basic MATLAB tools for computing and displaying antenna patterns. Specifically, you will learn
to:

= Perform basic manipulations in spherical coordinates
= Define simple antennas using MATLAB's antenna toolbox
= Plot antenna patterns in 2D and 3D

= Use the antenna patterns and free-space path loss functions to compute the path loss along a trajectory

Contents

= Spherical coordiantes.

= Simulation constants

= Dipole antenna

= Displaying the pattern

= Patch Element

= Plotting a cross-section

= Creating a custom antenna pattern

= Interpolating the directivity in the custom pattern

Spherical coordiantes.

We first demonstrate how to perform basic manipulations in spherical coordinates.

For example, the code below generates four random points in 3D and converts them to spherical coordinates
% Generate random data
X = randn(3,4);
% Compute spherical coordinates of a matrix of points
% Note these are in radians!
[az, el, rad] = cart2sph(X(1,:), X(2,:), X(3,:));
% We can then convert back

[x,y,z] = sph2cart(az,el,rad);
Xhat = [x; y; z];

Simulation constants

For the remainder of the demo, we will use the following simulation constants

Note: In MATLAB, all values are in metric units m, s, Hz, etc. Not GHz or MHz.

fc = 2.3e9; % Carrier frequency
vp = physconst('lightspeed'); % speed of light
lambda = vp/fc; % wavelength

Dipole antenna

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi 1/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

For a first antenna, we construct a simple dipole.

% Construct the antenna object
ant = dipole(...
"Length', lambda/2,...
'Width', ©.01*1lambda);

% Display the antenna
ant.show();

dipole antenna element
T

z (mm}

Displaying the pattern

We can display the antenna pattern with the following command.

ant.pattern(fc)

s

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi

2/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

Output : Directivity
Frequency :2.3 GHz
Wz walue : 2,16 dBi

hdin walue :-50 dBi
Azimuth : [-180°, 1807
Bewation : [-90° , 807

Show Antenna e

Patch Element

We now consider a more complex antenna. The antenna toolbox can analyze a number of antennas in use. However, once the

antenna is more complex, you will start to notice that the analysis becomes very slow.

len = 0.49*1ambda;

groundPlanelLen = lambda;

ant2 = patchMicrostrip(...
'Length', len, 'Width', 1.5%*len,
'GroundPlanelLength', groundPlanelen,
'GroundPlaneWidth', groundPlanelen,
'Height', ©.01*lambda,
'FeedOffset', [0.25*1len 0]);

% Tilt the element so that the maximum energy is in the x-axis
ant2.Tilt = 90;
ant2.TiltAxis = [0 1 @];

% Display the antenna pattern after rotation.
% This may take a few minutes. So be patient
ant2.pattern(fc, 'Type', 'Directivity');

% You can also save the pattern
[dir,az,el] = ant2.pattern(fc, 'Type', 'Directivity');

1-20

1-25

1-30

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi

3/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

Output : Directivity
Frequency :2.3 GHz
htax value :10.4 dBi

hin walue :-20.1 dEi 10
Azimuth : [-180°, 1807
Bewation : [-90° , 807

Show Antenna e

Plotting a cross-section

Once the antenna pattern is stored in an array, you can plot cross sections as follows. Suppose we want to plot the cross-section at
an elevation angle of 0

% Elevation angle to plot
elPlot = 9;

% Find the index closest to the desired angle
[~, iel] = min(abs(el - elPlot));

% Plot using the polar plot.

% Note the conversion to radians. You also have to use the |rlim|
% command to set the limits.

polarplot(deg2rad(az), dir(iel,:), 'LineWidth"', 3);

rlim([-30, 15]);

title('Directivity (dBi)');

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi 4/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

Directivity (dBi)
a0
120 60
10
0
150 30
—a |
180 0
210 330
240 300
270

Creating a custom antenna pattern

While MATLAB has many common antennas, you will often need to load antenna data from a manufacturer or other source. Also,
even when using MATLAB's antenna elements, it is often useful to compute the pattern once and store it. For this purpose, you can
create a custom antenna element. Here, we will create a custom antenna element with directivity pattern we just computed from the
microstrip element.

phasePattern = zeros(size(dir));

ant3 = phased.CustomAntennaElement(...
'AzimuthAngles', az, 'ElevationAngles', el,
'MagnitudePattern', dir,
'PhasePattern', phasePattern);

% Plot the antenna pattern.

% Note the format is slightly different since we are using
% the pattern routine from the phased array toolbox
ant3.pattern(fc);

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi 5/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

3D Directivity Pattern [10

Az 90
EID

Directivity (dBi)

Interpolating the directivity in the custom pattern

Once we have the antenna pattern, we can interpolate the values of the gain at other directions. To illustrate we will plot the total
path loss between a TX at the origin and an object traveling in a linear path along a 3D path. First, we create and plot the path

% Define the linear path
npts = 100;

xstart = [50 -50 0]"';
xend = [-50 50 50]";

t = linspace(©,1,npts);

X = xstart*(1-t) + xend*t;

% Plot the path in 3D along with the location of the TX at the origin
plot3(X(1,:), X(2,:), X(3,:), 'Linewidth', 3);

hold on;

plot3(@, @, 0, 'o', 'Linewidth', 3);

grid();

hold off;

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi 6/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

50 -

40 -

30

20 -

10 -

0l
50 O

a0

We compute the angle from the transmitter to the target. Remember to convert to degrees.

[azpath, elpath, dist] = cart2sph(X(1,:), X(2,:), X(3,:));
azpath = rad2deg(azpath);
elpath = rad2deg(elpath);

% Compute the free space path loss along the path without
% the antenna gain. We can use MATLAB's built-in function
plOomni = fspl(dist, lambda);

R

Compute the directivity using interpolation of the pattern.
We can use the ant3.resp method for this purpose, but the
interpolation is not smooth. So, we will do this using
MATLAB's interpolation objects. First, we create the
interpolation object.

= griddedInterpolant({el,az},dir);

NN

o
o

s

% Then, we compute the directivity using the object
dirPath = F(elpath,azpath);

% Compute the total path loss including the directivity
plDir = plOmni - dirPath;

% Plot the path loss over time. Can you explain the

plot(t, [plOmni; plDir]', 'Linewidth', 3);

grid();

set(gca, 'Fontsize', 16);

legend('Omni', 'With directivity', 'Location', 'SouthEast');
xlabel('Time");

ylabel('Path loss (dB)');

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi 7/8

4/3/2020 Demo: Computing and Displaying Antenna Patterns

95

w
-]

Qo
n

Path loss (dB)
~ o0
n =

-J
o

e O MNI
—=With directivity

0.2 0.4 0.6 0.8 1
Time

n
wn
=

Published with MATLAB® R2019b

file:///C:/Users/sdran/Dropbox/srangan/academic/courses/wirelesscomm/antennas/html/demo_antennas.htmi 8/8

