Projects STRLCPY wirelesscomm Commits d70f7fd5
🤬
  • ■ ■ ■ ■ ■ ■
    readme.md
    skipped 6 lines
    7 7  Anyone is free to use and copy this material (at their own risk!).
    8 8  But, please cite the material if you use the material in your own class.
    9 9   
    10  -# Pre-requisites
     10 +## Pre-requisites
    11 11   
    12 12  The course assumes you are familiar with digital communications at the graduate level. There are many resources for digital communications, including some lecture notes I created for the [NYU class](https://github.com/sdrangan/digitalcomm).
    13 13   
    skipped 10 lines
    24 24  from the former TA Ish Jain.
    25 25   
    26 26   
    27  -# Lecture Sequence
     27 +## Lecture Sequence
    28 28  The tentative plan for the lectures are below. Right now, only a few lectures
    29 29  have full material. We will be hoping to add to this material over the course
    30 30  of the semester. Other topics may be added at the end depending on time.
    skipped 33 lines
  • unit01_antennas/prob/prob_antennas.pdf
    Binary file.
  • ■ ■ ■ ■ ■ ■
    unit01_antennas/prob/prob_antennas.tex
    skipped 10 lines
    11 11  \usepackage{hyperref}
    12 12  \usepackage{tikz}
    13 13  \usepackage{enumitem}
     14 +\usepackage{siunitx}
    14 15  \usetikzlibrary{shapes,arrows}
    15 16  \usepackage{mdframed}
    16 17  \usepackage{mcode}
    skipped 160 lines
    177 178   
    178 179  \begin{document}
    179 180   
    180  -\title{Problems: Antennas and Free-Space Propagation\\
     181 +\title{Problem Solutions: Antennas and Free-Space Propagation\\
    181 182  EL-GY 6023. Wireless Communications}
    182 183  \author{Prof.\ Sundeep Rangan}
    183 184  \date{}
    skipped 4 lines
    188 189  azimuth angle and $\theta$ is elevation angle.
    189 190   
    190 191  \begin{enumerate}
    191  -\item \emph{EM wave}: Suppose the E-field is,
     192 +\item \emph{EM wave}: Suppose an EM plane wave has an E-field
    192 193  \[
    193 194   \Ebf(x,y,z,t) = E_0 \ebf_y \cos(2\pi f t - kx).
    194 195  \]
    195 196  \begin{enumerate}[label=(\alph*)]
    196 197   \item What is direction of motion?
    197  - \item If the average power flux is $10^{-8}$ mW/m$^2$, what is $E_0$?
    198  - Assume the characteristic impedance is $\eta_0 = 377 \Omega$.
    199  - \item If the frequency is $f=$ 1.5 GHz, what is $k$?
     198 + \item If the average power flux density is $10^{-8}\, \si{mW/m^2}$, what is $E_0$?
     199 + Assume the characteristic impedance is $\eta_0 = \SI{377}{\ohm}$.
     200 + \item If the frequency is $f=$ \SI{1.5}{GHz}, what is $k$?
    200 201   What are the units of $k$?
    201 202  \end{enumerate}
    202 203   
    203  -\item \emph{EM polarization}: An EM plane wave has
    204  -a power flux of $10^{-8}$ mW/m$^2$ in a horizontal polarization (along the $x$-axis)
    205  -and $2(10)^{-8}$ mW/m$^2$ in a vertical polarization (along the $y$-axis).
    206  -Assume the characteristic impedance is $\eta_0 = 377 \Omega$.
    207  -\begin{enumerate}[label=(\alph*)]
    208  - \item What is combined $E$-field value and its direction?
    209  - \item What is the direction of motion?
    210  - \item What is the total power flux?
    211  -\end{enumerate}
    212  - 
    213  - 
    214 204  \item \emph{dBm to linear conversions:}
    215 205  \begin{enumerate}[label=(\alph*)]
    216 206  \item Convert the following to mW: 17 dBm, -73 dBm, -97 dBW.
    skipped 1 lines
    218 208  \end{enumerate}
    219 209   
    220 210   
    221  -\item \emph{Spherical-cartesian conversions:}
    222  -\begin{enumerate}[label=(\alph*)]
    223  - \item Convert $(r,\phi,\theta)=(2,45^\circ,30^\circ)$ to $(x,y,z)$.
    224  - \item Convert $(x,y,z) = (1,2,3)$ to $(r,\phi,\theta)$.
    225  - \item Convert $(x,y,z) = (1,-2,3)$ to $(r,\phi,\theta)$.
    226  -\end{enumerate}
    227 211   
    228  -\item \emph{Rotation matrices}: The \emph{rotation matrix}
    229  -$R(\theta,\phi)$ is the $3 \times 3$ matrix such that $R(\theta,\phi)\rbf$ rotates
    230  -the vector $\rbf$ by an angle pair $(\theta,\phi)$.
    231  -You can read more about this on wikipedia or other sources.
    232  -\begin{enumerate}[label=(\alph*)]
    233  - \item Find the entries of $R(\theta,\phi)$.
    234  - \item Show $R(\theta,\phi)$ is \emph{orthogonal} meaning
    235  - $R(\theta,\phi)^{-1}=R(\theta,\phi)\tran$.
    236  - \item Is
     212 +\item \emph{Spherical-cartesian conversions:} When a transmitter is at the origin,
     213 +its E-field in the far field can often be represented as,
    237 214  \[
    238  - R(\theta_1,\phi_1)R(\theta_2,\phi_2) = R(\theta_2,\phi_2)R(\theta_1,\phi_1)?
     215 + \Ebf = E_\theta \ebf_\theta + E_\phi \ebf_\phi,
    239 216  \]
    240  -That is, do the order of rotations matter?
    241  -Prove or find a counter-example.
    242  -\end{enumerate}
     217 +where $\ebf_\theta$ and $\ebf_\phi$ are the basis vectors in elevation and azimuth direction.
     218 +Complete the following MATLAB function that takes a $1\times 3$ position vector
     219 +\mcode{pos} and $n \times 1$ values of $E_\theta$ and $E_\phi$ and returns the
     220 +an $n \times 3$ matrix \mcode{E} representing the E-field values in cartesian coordinates.
     221 +You may use any built in MATLAB functions. Be careful whether the methods use degrees
     222 +or radians.
     223 +\begin{lstlisting}
     224 + function E = convert(Etheta, Ephi, pos)
     225 +\end{lstlisting}
    243 226   
    244 227   
    245  -\item \emph{Angular areas:} Find the angular area in steradians of
    246  -following sets of angles:
     228 +\item \emph{Rotation matrices}: In wireless systems, we often need to consider antennas that
     229 +can be in arbitrary rotations. One way of specifying the orientation of an object
     230 +is through its so-called \emph{Euler} angles $(\alpha,\beta,\gamma)$ or
     231 +\emph{yaw, pitch} and \emph{roll}. Let $R(\alpha,\beta,\gamma)$ be the rotation matrix
     232 +for a given set of Euler angles. You can find the formulae for $R(\alpha,\beta,\gamma)$
     233 +in any reference such as wikipedia.
    247 234  \begin{enumerate}[label=(\alph*)]
    248  - \item $A_1 = \left\{ (\phi,\theta) ~ | ~ \phi \in [-30,30],~ \theta \in [-90,90]\right\}$
    249  - \item $A_2 = \left\{ (\phi,\theta) ~|~ \phi \in [-30,30], ~ \theta \in [-45,45]\right\}$
     235 +% \item Write a simple MATLAB function
     236 +% as follows that computes the rotation matrix given the Euler angles in degrees.
     237 +%\begin{lstlisting}
     238 +% function rot = rotMatrix(yaw,pitch,roll)
     239 +%\end{lstlisting}
     240 + 
     241 +\item Given elevation and azimuth angles $(\theta,\phi)$ find $(\alpha,\beta,\gamma)$
     242 +with $\gamma=0$ that rotates the $x$-axis to point in $(\theta,\phi)$.
     243 +\item Is $R(\alpha,0,0)^{-1} = R(-\alpha,0,0)$? Explain.
     244 +\item Is $R(\alpha,\beta,0)^{-1} = R(-\alpha,-\beta,0)$? Explain.
    250 245  \end{enumerate}
    251 246   
     247 +\item \emph{Angular areas:} Find the angular area in steradians of
     248 +following sets of angles where $\phi$ is the azimuth angle and $\theta$ is the elevation angles
     249 +in degrees:
     250 +\begin{enumerate}[label=(\alph*)]
     251 + \item $A_1 = \left\{ (\phi,\theta) ~ | ~ \phi \in [-\ang{30},\ang{30}],~ \theta \in [-\ang{90},\ang{90}]\right\}$
     252 + \item $A_2 = \left\{ (\phi,\theta) ~|~ \phi \in [-\ang{30},\ang{30}],~ \theta \in [-\ang{45},\ang{45}]\right\}$
     253 +\end{enumerate}
    252 254  \item \emph{Directivity:} Suppose an antenna radiates power uniformly in
    253  -the angular beam $\phi \in [-30,30], \theta \in [-45,45]$ and radiates
    254  -no power at other angles. What is the directivity of the antenna?
     255 +the angular beam $\phi \in [-\ang{30},\ang{30}]$, and $\theta \in [-\ang{45},\ang{45}]$,
     256 +and radiates no power at other angles. What is the maximum directivity of the antenna in dBi?
     257 +You can use the results from the previous problem.
     258 + 
    255 259   
    256  -\item \emph{Radiation intensity:} A 170 cm x 40 cm object
    257  -(roughly the size of a human) is 800m from a base station.
    258  -If the antenna transmits 250~mW isotropically, how much power
     260 +\item \emph{Radiation intensity:} A \SI{170}{cm} $\times$ \SI{40}{cm} object
     261 +(roughly the size of a human) is \SI{800}{m} from a base station.
     262 +If the base station antenna transmits \SI{250}{mW} isotropically, how much power
    259 263  reaches the human? Use reasonable approximations that the human is far from the
    260 264  transmitter.
    261 265   
    262  -\item \emph{Radiation integration:} The radiation density for some antenna is,
     266 +\item \emph{Radiation integration:} Suppose the radiation intensity is
    263 267  \[
    264  - U(\phi,\theta) = A\cos^2(\phi), \quad A = 100 \mbox{mW/sr}.
     268 + U(\phi,\theta) = A\cos^2(\theta), \quad A = 10\,\si{mW/sr},
    265 269  \]
    266  -\begin{enumerate}[label=(\alph*)]
    267  -\item What is the total radiated power in mW and dBm?
    268  -\item What is the directivity of the antenna in linear scale and in dBi?
    269  -\end{enumerate}
     270 +where $(\phi,\theta)$ are the azimuth and elevation angles.
     271 +find the total radiated power in dBm and maximum directivity in dBi.
     272 +You can look up any integrals you need.
     273 + 
    270 274   
    271 275  \item \emph{Numerically integrating patterns:}
    272  -Write a short MATLAB function,
    273  -\begin{lstlisting}
    274  - function [totPow, dir] = powerDirectivity(az,el,E,eta)
    275  -\end{lstlisting}
    276  -that computes the total power and directivity as a function of the $E$-field
    277  -values. The E field is specified as a complex matrix \mcode{E(i,j)}
    278  -at angles \mcode{az(i),el(j)}. You can assume that the angles are uniformly
    279  -spaced over the total angular space. The total power output
    280  - \mcode{totPow} should be a
    281  -scalar representing the total radiated power in dBm and the directivity output
    282  -should be \mcode{dir(i,j)} should be a matrix.
     276 +Suppose we are given the radiation intensity $U(\theta,\phi)$ at discrete points,
     277 +$(\theta_i,\phi_j)$ where
     278 +$\theta_i$, $i=1,\ldots,M$ is uniformly spaced on $[-\pi/2,\pi/2]$
     279 +and $\phi_j$, $j=1,\ldots,N$ is uniformly spaced on $[-\pi,\pi]$.
     280 +Assume $(\theta, \phi)$ are elevation and azimuth angles. Write a short MATLAB function
     281 +to compute the radiated power $P_{\rm rad}$ and directivity $D(\theta_i,\phi_j)$
     282 +from a matrix of values $U(\theta_i,\phi_j)$.
    283 283   
    284  -\item \emph{Friis' Law}: A transmitter radiates 100 mW at a carrier $f_c = 2.1$ GHz
    285  -with a directional gain of $G_t = 10$ dBi.
    286  -Suppose the receiver is $d = 200$ m from the transmitter and the path is free space.
    287  -What is the received power if:
     284 + 
     285 + 
     286 +\item \emph{Friis' Law}: A transmitter radiates \SI{15}{dBm} at a carrier $f_c =$ \SI{2.1}{GHz}
     287 +with a directional gain of $G_t = 9$\,\si{dBi}.
     288 +Suppose the receiver is $d =$ \SI{200}{m} from the transmitter and the path is free space.
     289 +What is the received power in dBm if:
    288 290  \begin{enumerate}[label=(\alph*)]
    289  -\item The effective received aperture is 1 cm$^2$.
    290  -\item The receiver gain is $G_r = 5$ dBi.
     291 +\item The effective received aperture is \SI{1}{cm^2}.
     292 +\item The receiver gain is $G_r =$ \SI{5}{dBi}.
    291 293  \end{enumerate}
     294 + 
    292 295   
    293 296  \end{enumerate}
    294 297   
    295 298  \end{document}
    296 299   
    297 300   
    298  - 
    299  - 
Please wait...
Page is in error, reload to recover