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https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://evil.com

1. User Input
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Dealing with User Input

e Modern webapps / APIs rely on:

o Validation

>>>
>>> re.match( s )
>>> re.match( s )
<re.Match object; span=(0, 7), match="a@a.com'>
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BRised
Dealing with User Input

e Modern webapps / APIs rely on:

o Validation

o Sanitization

> htmlspecialchars("input'\"><script>alert(1l);</script>");
= "1nput&#039;&quot;&gt;&Llt;script&gt;alert(l);&Llt;/script&gt;"”



Dealing with User Input

e Modern webapps / APIs rely on:
o Validation
o Sanitization
o Normalization

> iconv("UTF-8", "ASCII//TRANSLIT", "Aéi°ug¢");
"~A'e"1AQ"uc"

>>>
>>> unidecode.unidecode( )
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Problems with Validation

e Regex is widely used to validate parameters from the user

o Copied from StackOverflow, etc

[URGENT] HI SIR, PLS GIMME EASY WAY TO MAKE SURE EMAIL IS
VALID IN JAVASCRIPT THANK YOU
-1337

javascript  html 2 3 Next

Here's a regex. It's secure and should introduce no bugs in your code.
Enjoy:
Share Follow
1337

/\S+@\S+\.\S+$/

V Share Follow edited Jul 17 at 8:55
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Problems with Validation

e Regex is widely used to validate parameters from the user

o Copied from StackOverflow, etc

o Mostly not tested by devs (copy paste)

= regular expressions 101 ¥ @regex101 $ donate sponsor contact A bug reports & feedback & wiki [ what's new?
REGULAR EXPRESSION 2 matches (33 steps, 0.2ms) EXPLANATION <
i / BNSHENSENENSHS / gm v [ A\S+@\S+\.\S+$ / gm
A asserts position at start of a line &
VSIS v \S matches any non-whitespace character (equivalent to
a@a.com \r\n\t\f\v J)i
‘@ .~ + matches the previous token between one and unlimited

times, as many times as possible, giving back as needed
(greedy)
@ matches the character @ with index 64, (40,5 or 100;)
literally (case sensitive)
v \S matches any non-whitespace character (equivalent to

\r\n\t\f\v J)

+ matrheac the nreviniic taken hatween nne and 1in1im+it+ad
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Problems with Validation

e Regex is widely used to validate parameters from the user

o Copied from StackOverflow, etc
o Mostly not tested by devs (copy paste)

o Sometimes testing code exists but it’s specific to a subset of the cases

import re
msg = 'Entity "test" is not available'’
assert re.match(r'~Entity ".+" is not available$', msg)
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$ asserts position at the end of the string, or before the
line terminator right at the end of the string (if any) &



We are Not the Same

JavaScript

> "aaa" .match(/A[a-z]+%$/)

[ "aaa', index: @, input: 'aaa', groups:

> "aaal23".match(/A[a-z]+$/) Y
null

> "aaa\n".match(/A[a-z]+$/) Y
null

> "aaa\n123".match(/A[a-z]+$/) Y
null

Visho
3SiDE

G



B2ipEd
We are Not the Same

Python

>>> re.match( . )
<re.Match object; span=(0, 3), match="aaa'>

>>> re.match( ; ) Y
>>> re.match( : \n")

<re.Match object; span=(0, 3), match="aaa'>

>>> re.match( : \n ) Y



We are Not the Same

Ruby

"aaa" .match(/Al[a-z]+%$/)
"aaal23" .match(/A[a-z]+%$/)
"aaa\n" .match(/A[a-z]+%$/)
"aaa\n123" .match(/A[a-z]+%$/)

#<MatchData "aaa">
. L\ 4
nil
#<MatchData "aaa">
#<MatchData "aaa">
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We are Not the Same

BRIz

[~ [a-z]+S/
JavaScript Python Ruby
v v v
"aaal23" N N N
"aaa\n" N . .
"aaa\n123" N N .




2. REcollapse
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Redefining the Impossible

e How to bypass most user input validations?

e How to leverage user input transformations?

Fuzz the parameters. In a smart way.



Redefining the Impossible

Let’s start with the initial scenario.
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https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://evil.com

Probing the Unknown

Unexpected Input

Weird behavior
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The REcollapse Technique

1. Identify the regex pivot positions
a. positions
o} positions

c. Normalization positions

2. Fuzz positions with all possible bytes

3. Analyze the responses
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The REcollapse Technique

https://example.com/redirect?url="https://legit.example.com
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https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

The REcollapse Technique

https://example.com/redirect?url=https

:o/0 /5 legitt.

examplet.

\/\sjou
BSsip
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https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

eRiBed
The REcollapse Technique

https://example.com/redirect?url=https://lSgit.exSmple.cSm

|

Normalization positions

Typically vowels

Aadda(@ a



https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
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The REcollapse Technique

https://example.com/redirect?url="httpsS:5/5/515gits . SexSmpleS.5eSm

Fuzz all positions from to £


https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

More Examples

https://legit.example.com —

https

:5/5/515gitS. SexSmples.

legit@example.com — CLSgitS@5exSmples.5cSm

user_name— ~usS5Sr5_SnSme

<a href=x>y</a> — <55

hrSfs=

55>555<5/555>

cSm
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https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
mailto:legit@example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
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REcollapse Tool

e Helper tool capable of generating inputs according to these rules

e Supports multiple fuzzing sizes and encodings
%071legit@example.com

e Easy to paste on Burp or other tools %08legit@example.com
. %091egit@example.com
e Available at %0alegit@example.com

%0blegit@example.com
%0clegit@example.com
%0dlegit@example.com
%0elegit@example.com
%0flegit@example.com
%10legit@example.com
%l1llegit@example.com
%1l2legit@example.com
%131legit@example.com


https://github.com/0xacb/recollapse

Demo
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3. Mysterious Bugs
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What to Look for?

Literally anything that gets validated,

sanitized, normalized, used in queries, etc.

This will open the door
to mysterious bugs.
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Uncovering Mysterious Bugs

m & W N

Set your goal (e.g. ATO)

Pick your target field (e.g. email)

|dentify all flows that consume it
For every endpoint: REcollapse

Analyze all response codes. Any successful response?

a. Isthe regex always the same in all endpoints? Usually not

b. Pick a weird byte that went through
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Uncovering Mysterious Bugs

6. Go through all the flows from step
Recovery, login, signup, OAuth, SSO, email change & confirmation (depends on target field)

/. Hopefully, you just found a mysterious bug
a. Look for errors and weird behaviors
b. Try to realize the impact or an attack scenario

c. If not, go back to step 5 or

G



4. Real-world Examples
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1. Interaction-based ATO via Redirect

https://login.redacted.com/auth?url=https://mail.redacted.com 308

Location: https://mail.redacted.com/? =13371337...
e After/If the userislogged in, it redirects to with an auth parameter
e As an attacker, we want to steal the auth parameter to perform ATO

e There’s some sort of validation (regex) that only allows redacted.com and

subdomains of it


https://example.com/redirect?url=https://legit.example.com
https://mail.example.com/?token=f704cd50%E2%80%A6
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1. Interaction-based ATO via Redirect

=https://evil.com 403
=https://redacted.com.evil.com 403

=https://redacted.com[@evil.com 403

Now what? &


https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

B s%go 2

Interaction-based ATO via Redirect

Fuzzing url=https://redacted.comSevil.com from to (1 byte)

returns no useful - > only
Fuzzing to (2 bytes) returns a nice @08 with

We can send a link to the victim and exfil a legitimate token to perform ATO

Location: https://redacted.com; (@ evil.com


https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

BRIBE
2. Null Boy
e \We were fuzzing a target with this technique
e (@dsamwcyo / zlz noticed that a on a signup request would reveal a weird
behavior

Original blog post

Filling in the Blanks: Exploiting Null Byte Buffer Overflow for a S40,000 Bounty

(samcurry.net)

3


https://samcurry.net/filling-in-the-blanks-exploiting-null-byte-buffer-overflow-for-a-40000-bounty/

2. Null Boy

Example successiul username overwrite with null byte

attacker atiempts to register the
primed victim username...

POST /register
username=victim%00

checks are done fo reqgister the user
'victim%00”...

Front end application
(e.g. NodelJS)

"victim%00” is unique, proceed with
registration

the derived value, after being passed
Hypothetical backend service between the two services, is now
(e.g. PHP5 API) "victim" as the null byte was
removed
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2. Null Boy

e Signup as victim [@domain.com would return victim.[@domain.com

abc...

abc%00%00%00%00 [random memory}

%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00

[random memory]

PAsswORd123

[random memory]

<IDOCTYPE HTML>




eRiBed
3. REcache Deception

e https://redacted.com/wp-json/v1l/user 200

{

"username": "xxxxxxxx",

"api_token": "xxxxxxxx"

}

e https://redacted.com/wp-json/vl/user.css 404
[...] .pdf 404
[...] Js 404


https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

BRised
3. REcache Deception

e Caching rules are usually regex-based
e A static extension is not enough these days to perform web cache deception
e \We need to enforce the correct in the response

e Let'sfuzzit!
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3. REcache Deception

e Fuzzing https://redacted.com/wp-json/v1l/userS.[extension] from to

and well-known extensions returned 200 with and
Age: 35, X-Cache: Hit

https://redacted.com/wp-json/vl/user

We can send a link to a logged-in victim that will request this URL, and then we just

need to access the cached content from our end and steal the api_token.


https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

4. Username Confusion

Waiting for permission to make this one public. Will update later.
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9. Zero-interaction ATO [OAuth]

° offers a OAuth mechanism
e OAuth scope includes email address to login in multiple applications
e In , the email address doesn’t need to be verified to create an account

e If the email already exists, you can’t login or sign up on

G



9. Zero-interaction ATO [OAuth]

e Let’s fuzz the email change request on

o Proper regex in place, no weird characters allowed

e Fuzzing the signup request on
o vict(OUm@domain.com goes through B

° in this state on

e Successful ATO
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o® e @ Free Online Graphic, Banner, ¢ X () Shopify account profile X -+

& - C @& accounts.shopify.com/accounts/148290879

() shopify
@ General

ﬁ Security

General

Details

Login service
Connect an external login service to

quickly and securely access your Shopify
ID.

Stores, programs, and resources

Visit or manage the following stores,

w &

ﬁ: Upload photo Remove photo

First name Last name
Victim Account
I
Email Phone (optional)

Oxacb+talervictim@wearehackerone.cot
Change email

Connected login service

You do not have an external login service connected to your Shopify ID.

G Connect to Google

Create store

You don't have any stores yet. Create a store on Shopify, and get the first 14

rograms, and resources connected to .

e @ » Q

§: Victim Account


https://docs.google.com/file/d/1-2D8mA4-nZrcK0-51vqIzgz5p3m03-nW/preview

S. Zero-interaction ATO [0OAuth]

Email address
Username
Name

Normalization is often used in these flows.
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6. Zero-interaction ATO takeover [Recovery]

e Target is an email provider
e Ourgoalisto ATO a inbox without any interaction

e People cansign up as or use the current email address

e Let' explore all the flows

Recovering will send a code to a redacted email address:


mailto:victim@target.com

B s&g’ 2

6. Zero-interaction ATO takeover [Recovery]

Adding as recovery email:

o  Will require email verification but...

o Itresults in a change in the flow of if we
submit
Recovering returns now multiple emails:
1. itself!



mailto:victim@target.com
mailto:attacker@target.com
https://target.com/recovery
mailto:victim@target.com
mailto:victim@target.com
mailto:victim@target.com

esied
6. Zero-interaction ATO takeover [Recovery]

e Some sort of regex was matching in order to distinguish both

account types

e After fuzzing the email parameter, some special characters were displaying the

same recovery email addresses:
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6. Zero-interaction ATO takeover [Recovery]

Adding a recovery email address as will:

o Show up as a recovery email of the attacker’s account

o But as option 2 we still have available

After recovering the code via email to

Select an account:


mailto:victim@target.com.domain.com
mailto:victim@target.com
mailto:victim@target.com
mailto:victim@target.com

eRiped
IELCENENE

e Developers: always test/fuzz your regex, or rely on well-known libraries
e Simple input modifications can result in great damage
o Fuzz by flipping or adding bytes 4
e Black-box regex testing is still not very touched
o Creative and manual work. Go for it @
e Regex behavior can reveal information about libraries, languages, etc
e If something is being validated and you can bypass it...

o Think about the impact and you’ll see the big picture!
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