
Till REcollapse
Fuzzing the Web for Mysterious Bugs

@0xacb

https://twitter.com/0xacb

$ whoami

● André Baptista / 0xacb
● Co-founder @ Ethiack
● Invited professor @ MSc in Infosec - University of Porto
● Bug bounty hunter
● Former captain @ xSTF team

https://twitter.com/0xacb
https://ethiack.com
https://msi.dcc.fc.up.pt
https://twitter.com/ExtremeSTF

Agenda

● 1. Input & Regex quirks
● 2. The REcollapse technique
● 3. Mysterious bugs
● 4. Real-world examples

Intro

https://example.com/redirect?url=https://legit.example.com ✅
https://example.com/redirect?url=https://evil.com ❌

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://evil.com

1. User Input

Dealing with User Input

● Modern webapps / APIs rely on:
○ Validation

❌

Dealing with User Input

● Modern webapps / APIs rely on:
○ Validation
○ Sanitization

Dealing with User Input

● Modern webapps / APIs rely on:
○ Validation
○ Sanitization
○ Normalization

Problems with Validation

● Regex is widely used to validate parameters from the user
○ Copied from StackOverflow, etc

Problems with Validation

● Regex is widely used to validate parameters from the user
○ Copied from StackOverflow, etc
○ Mostly not tested by devs (copy paste)

Problems with Validation

● Regex is widely used to validate parameters from the user
○ Copied from StackOverflow, etc
○ Mostly not tested by devs (copy paste)
○ Sometimes testing code exists but it’s specific to a subset of the cases

We are Not the Same

JavaScript

❌

❌

❌

We are Not the Same

❌

❌

Python

We are Not the Same

❌

Ruby

We are Not the Same

JavaScript Python Ruby

"aaa" ✅ ✅ ✅
"aaa123" ❌ ❌ ❌
"aaa\n" ❌ ✅ ✅
"aaa\n123" ❌ ❌ ✅

/^[a-z]+$/

2. REcollapse

Redefining the Impossible

● How to bypass most user input validations?

● How to leverage user input transformations?

Fuzz the parameters. In a smart way.

Redefining the Impossible

Let’s start with the initial scenario.

https://example.com/redirect?url=https://legit.example.com ✅
https://example.com/redirect?url=https://evil.com ❌

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://evil.com

Unexpected Input

Weird behavior

Probing the Unknown

The REcollapse Technique

1. Identify the regex pivot positions
a. Starting & termination positions
b. Separator positions
c. Normalization positions

2. Fuzz positions with all possible bytes

3. Analyze the responses

The REcollapse Technique

https://example.com/redirect?url=$https://legit.example.com$

Starting position Termination position

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

The REcollapse Technique

https://example.com/redirect?url=https$:$/$/$legit$.$example$.$com

Separator positions

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

The REcollapse Technique

https://example.com/redirect?url=https://l$git.ex$mple.c$m

Normalization positions

Typically vowels
A á ª ã ⓐ a

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

The REcollapse Technique

https://example.com/redirect?url=$https$:$/$/lgit$.$ex$mple$.cm$

Fuzz all positions from %00 to %ff ⚡

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

More Examples

https://legit.example.com $https$:$/$/lgit$.$ex$mple$.cm$

legit@example.com lgit$@$ex$mple$.cm$

user_name usr$_$nme

y $<$$$ hrf$=$$$>$$$<$/$$$>$

https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
mailto:legit@example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

REcollapse Tool

● Helper tool capable of generating inputs according to these rules
● Supports multiple fuzzing sizes and encodings
● Easy to paste on Burp or other tools
● Available at https://github.com/0xacb/recollapse

https://github.com/0xacb/recollapse

Demo

3. Mysterious Bugs

What to Look for?

Literally anything that gets validated,
sanitized, normalized, used in queries, etc.

This will open the door
to mysterious bugs.

Uncovering Mysterious Bugs

1. Set your goal (e.g. ATO)
2. Pick your target field (e.g. email)
3. Identify all flows that consume it
4. For every endpoint: REcollapse

5. Analyze all response codes. Any successful response?
a. Is the regex always the same in all endpoints? Usually not
b. Pick a weird byte that went through

Uncovering Mysterious Bugs

6. Go through all the flows from step 3

Recovery, login, signup, OAuth, SSO, email change & confirmation (depends on target field)

7. Hopefully, you just found a mysterious bug
a. Look for errors and weird behaviors
b. Try to realize the impact or an attack scenario
c. If not, go back to step 5b or 1 / 2

4. Real-world Examples

1. Interaction-based ATO via Redirect

https://login.redacted.com/auth?url=https://mail.redacted.com 302

Location: https://mail.redacted.com/?token=13371337…

● After/If the user is logged in, it redirects to url with an auth token parameter
● As an attacker, we want to steal the auth token parameter to perform ATO
● There’s some sort of validation (regex) that only allows redacted.com and

subdomains of it

https://example.com/redirect?url=https://legit.example.com
https://mail.example.com/?token=f704cd50%E2%80%A6

1. Interaction-based ATO via Redirect

url=https://evil.com 403

url=https://redacted.com.evil.com 403

url=https://redacted.com@evil.com 403

Now what? 🤔

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

1. Interaction-based ATO via Redirect

● Fuzzing url=https://redacted.com$evil.com from %00 to %ff (1 byte)
returns no useful 302 > only # / ?

● Fuzzing %00%00 to %ff%ff (2 bytes) returns a nice 302 with %3b%40

● We can send a link to the victim and exfil a legitimate token to perform ATO

Location: https://redacted.com;@evil.com

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

2. Null Boy

● We were fuzzing a target with this technique
● @samwcyo / zlz noticed that a %00 on a signup request would reveal a weird

behavior

Original blog post

Filling in the Blanks: Exploiting Null Byte Buffer Overflow for a $40,000 Bounty
(samcurry.net)

https://samcurry.net/filling-in-the-blanks-exploiting-null-byte-buffer-overflow-for-a-40000-bounty/

2. Null Boy

2. Null Boy

● Sign up as victim%00@domain.com would return victimL@domain.com

3. REcache Deception

● https://redacted.com/wp-json/v1/user 200

{
 "username": "xxxxxxxx",
 "api_token": "xxxxxxxx"
}

● https://redacted.com/wp-json/v1/user.css 404
[...] .pdf 404
[...] .js 404

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

3. REcache Deception

● Caching rules are usually regex-based
● A static extension is not enough these days to perform web cache deception
● We need to enforce the correct Content-Type in the response
● Let’s fuzz it!

3. REcache Deception

● Fuzzing https://redacted.com/wp-json/v1/user$.[extension] from %00 to
%ff and well-known extensions returned 200 with %23 (#) and %3f (?)

Age: 35, X-Cache: Hit

https://redacted.com/wp-json/v1/user%23.pdf

We can send a link to a logged-in victim that will request this URL, and then we just
need to access the cached content from our end and steal the api_token.

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

4. Username Confusion

Waiting for permission to make this one public. Will update later.

5. Zero-interaction ATO (OAuth)

● Shopify offers a “Signup/Login with Shopify” OAuth mechanism
● OAuth scope includes email address to login in multiple applications
● In taler.app, the email address doesn’t need to be verified to create an account
● If the email already exists, you can’t login or sign up on Shopify

5. Zero-interaction ATO (OAuth)

● Let’s fuzz the email change request on accounts.shopify.com

○ Proper regex in place, no weird characters allowed ❌
● Fuzzing the signup request on accounts.shopify.com:

○ victⓘm@domain.com goes through ✅
● Login with Shopify in this state on taler.app

● Successful ATO

https://docs.google.com/file/d/1-2D8mA4-nZrcK0-51vqIzgz5p3m03-nW/preview

5. Zero-interaction ATO (OAuth)

 Normalization is often used in these flows.

6. Zero-interaction ATO takeover (Recovery)

● Target is an email provider
● Our goal is to ATO a victim@target.com inbox without any interaction
● People can sign up as username@target.com or use the current email address
● Let’ explore all the flows

Recovering victim@target.com will send a code to a redacted email address:

**********@redacted.com

mailto:victim@target.com

6. Zero-interaction ATO takeover (Recovery)

Adding victim@target.com as attacker@target.com recovery email:

○ Will require email verification but…
○ It results in a change in the flow of https://redacted.target.com/recovery if we

submit victim@target.com

Recovering victim@target.com returns now multiple emails:

1. victim@target.com itself!
2. **********@redacted.com

mailto:victim@target.com
mailto:attacker@target.com
https://target.com/recovery
mailto:victim@target.com
mailto:victim@target.com
mailto:victim@target.com

6. Zero-interaction ATO takeover (Recovery)

● Some sort of regex was matching @target.com in order to distinguish both
account types

● After fuzzing the email parameter, some special characters were displaying the
same recovery email addresses: victim@target.c./.o./m

6. Zero-interaction ATO takeover (Recovery)

Adding a recovery email address as victim@target.com.domain.com will:

○ Show up as a recovery email of the attacker’s account
○ But as option 2 we still have **********@redacted.com available

After recovering the code via email to victim@target.com.domain.com:

Select an account:

attacker@target.com

victim@target.com ✅

mailto:victim@target.com.domain.com
mailto:victim@target.com
mailto:victim@target.com
mailto:victim@target.com

Takeaways

● Developers: always test/fuzz your regex, or rely on well-known libraries
● Simple input modifications can result in great damage

○ Fuzz by flipping or adding bytes ⚡
● Black-box regex testing is still not very touched

○ Creative and manual work. Go for it 💰
● Regex behavior can reveal information about libraries, languages, etc
● If something is being validated and you can bypass it…

○ Think about the impact and you’ll see the big picture! 🖼

Special thanks

@regala_ / fisher
@0xz3z4d45
@jllis
@samwcyo / zlz
@yassineaboukir
@0xteknogeek

@ethiack team
@0xdisturbance team
@hacker0x01 team

https://twitter.com/regala_
https://twitter.com/0xz3z4d45
https://twitter.com/jllis
https://twitter.com/samwcyo
https://twitter.com/yassineaboukir
https://twitter.com/0xteknogeek
https://twitter.com/ethiack
https://twitter.com/0xdisturbance
https://twitter.com/hacker0x01

