Till REcollapse

Fuzzing the Web for Mysterious Bugs

@0xach

oty

https://twitter.com/0xacb

B s?g"é'}

S whoami

e André Baptista / Oxacb
e Co-founder @ Ethiack

e Invited professor @ MSc in Infosec - University of Porto

e Bug bounty hunter

e Former captain @ xSTF team

https://twitter.com/0xacb
https://ethiack.com
https://msi.dcc.fc.up.pt
https://twitter.com/ExtremeSTF

eRiped
Agenda

e 1. Input & Regex quirks
e 2. The REcollapse technique
e 3. Mysterious bugs

e 4. Real-world examples

Intro

\isho
BfSIDE

G

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://evil.com

1. User Input

oty

Dealing with User Input

e Modern webapps / APIs rely on:

o Validation

>>>
>>> re.match(s)
>>> re.match(s)
<re.Match object; span=(0, 7), match="a@a.com'>

\ W 4

Visho
JSIDE

G

BRised
Dealing with User Input

e Modern webapps / APIs rely on:

o Validation

o Sanitization

> htmlspecialchars("input'\"><script>alert(1l);</script>");
= "1nput'">&Llt;script>alert(l);&Llt;/script>"”

Dealing with User Input

e Modern webapps / APIs rely on:
o Validation
o Sanitization
o Normalization

> iconv("UTF-8", "ASCII//TRANSLIT", "Aéi°ug¢");
"~A'e"1AQ"uc"

>>>
>>> unidecode.unidecode()

B!

Visho
SIDE

G

Problems with Validation

e Regex is widely used to validate parameters from the user

o Copied from StackOverflow, etc

[URGENT] HI SIR, PLS GIMME EASY WAY TO MAKE SURE EMAIL IS
VALID IN JAVASCRIPT THANK YOU
-1337

javascript html 2 3 Next

Here's a regex. It's secure and should introduce no bugs in your code.
Enjoy:
Share Follow
1337

/\S+@\S+\.\S+$/

V Share Follow edited Jul 17 at 8:55

B

\/'\g)ou

Y

Gy

Problems with Validation

e Regex is widely used to validate parameters from the user

o Copied from StackOverflow, etc

o Mostly not tested by devs (copy paste)

= regular expressions 101 ¥ @regex101 $ donate sponsor contact A bug reports & feedback & wiki [what's new?
REGULAR EXPRESSION 2 matches (33 steps, 0.2ms) EXPLANATION <
i / BNSHENSENENSHS / gm v [A\S+@\S+\.\S+$ / gm
A asserts position at start of a line &
VSIS v \S matches any non-whitespace character (equivalent to
a@a.com \r\n\t\f\v J)i
‘@ .~ + matches the previous token between one and unlimited

times, as many times as possible, giving back as needed
(greedy)
@ matches the character @ with index 64, (40,5 or 100;)
literally (case sensitive)
v \S matches any non-whitespace character (equivalent to

\r\n\t\f\v J)

+ matrheac the nreviniic taken hatween nne and 1in1im+it+ad

BRlsed
Problems with Validation

e Regex is widely used to validate parameters from the user

o Copied from StackOverflow, etc
o Mostly not tested by devs (copy paste)

o Sometimes testing code exists but it’s specific to a subset of the cases

import re
msg = 'Entity "test" is not available'’
assert re.match(r'~Entity ".+" is not available$', msg)

B2ipEd

$ asserts position at the end of the string, or before the
line terminator right at the end of the string (if any) &

We are Not the Same

JavaScript

> "aaa" .match(/A[a-z]+%$/)

["aaa', index: @, input: 'aaa', groups:

> "aaal23".match(/A[a-z]+$/) Y
null

> "aaa\n".match(/A[a-z]+$/) Y
null

> "aaa\n123".match(/A[a-z]+$/) Y
null

Visho
3SiDE

G

B2ipEd
We are Not the Same

Python

>>> re.match(.)
<re.Match object; span=(0, 3), match="aaa'>

>>> re.match(;) Y
>>> re.match(: \n")

<re.Match object; span=(0, 3), match="aaa'>

>>> re.match(: \n) Y

We are Not the Same

Ruby

"aaa" .match(/Al[a-z]+%$/)
"aaal23" .match(/A[a-z]+%$/)
"aaa\n" .match(/A[a-z]+%$/)
"aaa\n123" .match(/A[a-z]+%$/)

#<MatchData "aaa">
. L\ 4
nil
#<MatchData "aaa">
#<MatchData "aaa">

Visho
3SiDE

G

We are Not the Same

BRIz

[~ [a-z]+S/
JavaScript Python Ruby
v v v
"aaal23" N N N
"aaa\n" N . .
"aaa\n123" N N .

2. REcollapse

oty

BRinz

Redefining the Impossible

e How to bypass most user input validations?

e How to leverage user input transformations?

Fuzz the parameters. In a smart way.

Redefining the Impossible

Let’s start with the initial scenario.

B

Vigho
SIDE

G

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://evil.com

Probing the Unknown

Unexpected Input

Weird behavior

Visho
JSIDE

28

The REcollapse Technique

1. Identify the regex pivot positions
a. positions
o} positions

c. Normalization positions

2. Fuzz positions with all possible bytes

3. Analyze the responses

Visho
3SiDE

G

The REcollapse Technique

https://example.com/redirect?url="https://legit.example.com

B

Viho
SIDE

G

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

The REcollapse Technique

https://example.com/redirect?url=https

:o/0 /5 legitt.

examplet.

\/\sjou
BSsip

com

Gy

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

eRiBed
The REcollapse Technique

https://example.com/redirect?url=https://lSgit.exSmple.cSm

|

Normalization positions

Typically vowels

Aadda(@ a

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

BRised
The REcollapse Technique

https://example.com/redirect?url="httpsS:5/5/515gits . SexSmpleS.5eSm

Fuzz all positions from to £

https://example.com/ssrf?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

More Examples

https://legit.example.com —

https

:5/5/515gitS. SexSmples.

legit@example.com — CLSgitS@5exSmples.5cSm

user_name— ~usS5Sr5_SnSme

y — <55

hrSfs=

55>555<5/555>

cSm

B:

Visho
SIDE

G

https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
mailto:legit@example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com
https://example.com/ssrf?url=https://legit.example.com

eRiBed
REcollapse Tool

e Helper tool capable of generating inputs according to these rules

e Supports multiple fuzzing sizes and encodings
%071legit@example.com

e Easy to paste on Burp or other tools %08legit@example.com
. %091egit@example.com
e Available at %0alegit@example.com

%0blegit@example.com
%0clegit@example.com
%0dlegit@example.com
%0elegit@example.com
%0flegit@example.com
%10legit@example.com
%l1llegit@example.com
%1l2legit@example.com
%131legit@example.com

https://github.com/0xacb/recollapse

Demo

oty

3. Mysterious Bugs

oty

What to Look for?

Literally anything that gets validated,

sanitized, normalized, used in queries, etc.

This will open the door
to mysterious bugs.

Visho
B! SIDE

G

Uncovering Mysterious Bugs

m & W N

Set your goal (e.g. ATO)

Pick your target field (e.g. email)

|dentify all flows that consume it
For every endpoint: REcollapse

Analyze all response codes. Any successful response?

a. Isthe regex always the same in all endpoints? Usually not

b. Pick a weird byte that went through

Vigho
3SiDE

G

Viho
B! SIDE

Uncovering Mysterious Bugs

6. Go through all the flows from step
Recovery, login, signup, OAuth, SSO, email change & confirmation (depends on target field)

/. Hopefully, you just found a mysterious bug
a. Look for errors and weird behaviors
b. Try to realize the impact or an attack scenario

c. If not, go back to step 5 or

G

4. Real-world Examples

oty

B s%g’ 2

1. Interaction-based ATO via Redirect

https://login.redacted.com/auth?url=https://mail.redacted.com 308

Location: https://mail.redacted.com/? =13371337...
e After/If the userislogged in, it redirects to with an auth parameter
e As an attacker, we want to steal the auth parameter to perform ATO

e There’s some sort of validation (regex) that only allows redacted.com and

subdomains of it

https://example.com/redirect?url=https://legit.example.com
https://mail.example.com/?token=f704cd50%E2%80%A6

BRised
1. Interaction-based ATO via Redirect

=https://evil.com 403
=https://redacted.com.evil.com 403

=https://redacted.com[@evil.com 403

Now what? &

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

B s%go 2

Interaction-based ATO via Redirect

Fuzzing url=https://redacted.comSevil.com from to (1 byte)

returns no useful - > only
Fuzzing to (2 bytes) returns a nice @08 with

We can send a link to the victim and exfil a legitimate token to perform ATO

Location: https://redacted.com; (@ evil.com

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

BRIBE
2. Null Boy
e \We were fuzzing a target with this technique
e (@dsamwcyo / zlz noticed that a on a signup request would reveal a weird
behavior

Original blog post

Filling in the Blanks: Exploiting Null Byte Buffer Overflow for a S40,000 Bounty

(samcurry.net)

3

https://samcurry.net/filling-in-the-blanks-exploiting-null-byte-buffer-overflow-for-a-40000-bounty/

2. Null Boy

Example successiul username overwrite with null byte

attacker atiempts to register the
primed victim username...

POST /register
username=victim%00

checks are done fo reqgister the user
'victim%00”...

Front end application
(e.g. NodelJS)

"victim%00” is unique, proceed with
registration

the derived value, after being passed
Hypothetical backend service between the two services, is now
(e.g. PHP5 API) "victim" as the null byte was
removed

B

Vigho

SiD

Gy

BRinz

2. Null Boy

e Signup as victim [@domain.com would return victim.[@domain.com

abc...

abc%00%00%00%00 [random memory}

%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00
%00%00%00%00%00%00

[random memory]

PAsswORd123

[random memory]

<IDOCTYPE HTML>

eRiBed
3. REcache Deception

e https://redacted.com/wp-json/v1l/user 200

{

"username": "xxxxxxxx",

"api_token": "xxxxxxxx"

}

e https://redacted.com/wp-json/vl/user.css 404
[...] .pdf 404
[...] Js 404

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

BRised
3. REcache Deception

e Caching rules are usually regex-based
e A static extension is not enough these days to perform web cache deception
e \We need to enforce the correct in the response

e Let'sfuzzit!

B s%go 2

3. REcache Deception

e Fuzzing https://redacted.com/wp-json/v1l/userS.[extension] from to

and well-known extensions returned 200 with and
Age: 35, X-Cache: Hit

https://redacted.com/wp-json/vl/user

We can send a link to a logged-in victim that will request this URL, and then we just

need to access the cached content from our end and steal the api_token.

https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com
https://example.com/redirect?url=https://legit.example.com

4. Username Confusion

Waiting for permission to make this one public. Will update later.

Visho
Bisip

Gy

Vigho
B! SIDE

9. Zero-interaction ATO [OAuth]

° offers a OAuth mechanism
e OAuth scope includes email address to login in multiple applications
e In , the email address doesn’t need to be verified to create an account

e If the email already exists, you can’t login or sign up on

G

9. Zero-interaction ATO [OAuth]

e Let’s fuzz the email change request on

o Proper regex in place, no weird characters allowed

e Fuzzing the signup request on
o vict(OUm@domain.com goes through B

° in this state on

e Successful ATO

Vigho
3SiDE

G

o® e @ Free Online Graphic, Banner, ¢ X () Shopify account profile X -+

& - C @& accounts.shopify.com/accounts/148290879

() shopify
@ General

ﬁ Security

General

Details

Login service
Connect an external login service to

quickly and securely access your Shopify
ID.

Stores, programs, and resources

Visit or manage the following stores,

w &

ﬁ: Upload photo Remove photo

First name Last name
Victim Account
I
Email Phone (optional)

Oxacb+talervictim@wearehackerone.cot
Change email

Connected login service

You do not have an external login service connected to your Shopify ID.

G Connect to Google

Create store

You don't have any stores yet. Create a store on Shopify, and get the first 14

rograms, and resources connected to .

e @ » Q

§: Victim Account

https://docs.google.com/file/d/1-2D8mA4-nZrcK0-51vqIzgz5p3m03-nW/preview

S. Zero-interaction ATO [0OAuth]

Email address
Username
Name

Normalization is often used in these flows.

\isho
BYSIDE

2

B s&g 2

6. Zero-interaction ATO takeover [Recovery]

e Target is an email provider
e Ourgoalisto ATO a inbox without any interaction

e People cansign up as or use the current email address

e Let' explore all the flows

Recovering will send a code to a redacted email address:

mailto:victim@target.com

B s&g’ 2

6. Zero-interaction ATO takeover [Recovery]

Adding as recovery email:

o Will require email verification but...

o Itresults in a change in the flow of if we
submit
Recovering returns now multiple emails:
1. itself!

mailto:victim@target.com
mailto:attacker@target.com
https://target.com/recovery
mailto:victim@target.com
mailto:victim@target.com
mailto:victim@target.com

esied
6. Zero-interaction ATO takeover [Recovery]

e Some sort of regex was matching in order to distinguish both

account types

e After fuzzing the email parameter, some special characters were displaying the

same recovery email addresses:

BRised
6. Zero-interaction ATO takeover [Recovery]

Adding a recovery email address as will:

o Show up as a recovery email of the attacker’s account

o But as option 2 we still have available

After recovering the code via email to

Select an account:

mailto:victim@target.com.domain.com
mailto:victim@target.com
mailto:victim@target.com
mailto:victim@target.com

eRiped
IELCENENE

e Developers: always test/fuzz your regex, or rely on well-known libraries
e Simple input modifications can result in great damage
o Fuzz by flipping or adding bytes 4
e Black-box regex testing is still not very touched
o Creative and manual work. Go for it @
e Regex behavior can reveal information about libraries, languages, etc
e If something is being validated and you can bypass it...

o Think about the impact and you’ll see the big picture!

Special thanks

[@regala_ / fisher
[@0xz3z4d45
@ill

[@samwcyo / zlz

[@yassineaboukir
[@Oxteknogeek

[@ethiack team
[@0xdisturbance team
[@hackerOx01 team

B!

Visho
SIDE

G

https://twitter.com/regala_
https://twitter.com/0xz3z4d45
https://twitter.com/jllis
https://twitter.com/samwcyo
https://twitter.com/yassineaboukir
https://twitter.com/0xteknogeek
https://twitter.com/ethiack
https://twitter.com/0xdisturbance
https://twitter.com/hacker0x01

